

Autonomic Computing Research Challenges

Jeff Kephart IBM Research

kephart@us.ibm.com www.research.ibm.com/autonomic

© 2004 IBM Corporation

What is Autonomic Computing?

According to googlism.com, autonomic computing is ...

- going to be the next big thing
- inevitable
- based on the autonomic nervous system
- not a product
- shipping now
- years off
- a new initiative from ibm
- something hp does already

Acknowledgment: Armando Fox, Stanford U.

Autonomic Computing

=	
=	
_	

Cost of People vs. Spending on New Systems

Source: IDC, On-Demand Enterprises and Utility Computing: A Current Market Assessment and Outlook, IDC #31513, July 2004.

I/T Complexity: A Looming Crisis

- Expensive
 - Cost of management by administrators is increasing
- Fragile
 - Complex interdependencies make it hard to diagnose and fix problems
 - More prone to human error (additional cost)
- Inflexible
 - Reluctance to change I/T infrastructure once it is working
 - Does not support agile business (new software, business processes)
- Worsening
 - Product innovations typically exacerbate the problem

Solution: Self-managing systems

Future Vision of Autonomic Computing?

Machines will take over all management tasks, rendering humans superfluous.

RoboCop

Wrong!

© 2005 IBM Corporation

Future Vision of Autonomic Computing

Machines will free system administrators to manage system at a higher level

Enterprise computer (2365)

Acknowledgment: David Patterson, UCB

Autonomic Computing

© 2005 IBM Corporation

			_
_	_		
	-	-	
		_	

What is Autonomic Computing?

According to googlism.com, autonomic computing is ...

- going to be the next big thing
- inevitable
- based on the autonomic nervous system
- not a product
- shipping now
- years off
- a new initiative from ibm
- something hp does already

According to Kephart and Chess:

"Computing systems that manage themselves in accordance with high-level objectives from humans"

A Vision of Autonomic Computing, IEEE Computer, January 2003

IBM

Outline

- Background
- AC Research at IBM
 - > Overview
 - Unity, a Prototype Autonomic Data Center
- AC Research Challenges
- Conclusions

IBM's Autonomic Computing Initiative

- Paul Horn, Senior VP of Research, announced AC initiative in 2001
 - Cited analogy to autonomic nervous system
- AC organizations were formed within Research and Software Group
 - Research effort now has ~100 employees
- Reaching beyond IBM
 - Numerous pertinent standards efforts (W3C, Oasis, ...)
 - Faculty awards, equipment grants
 - > Sponsorship of several AC conferences, workshops

Taxonomy of Autonomic Computing Research at IBM

Autonomic elements

Autonomic systems

Human interface

			_
_	_		
	-	-	
		_	

Taxonomy of Autonomic Computing Research at IBM

- Autonomic elements
 - Specific autonomic elements
 - Database, storage, network, server, client, ...
 - Generic autonomic element technologies
 - Modeling, analysis, forecasting, optimization, planning, feedback control, learning
 - Generic autonomic element architectures, tools, and prototypes

Autonomic systems

- Autonomic system technologies
 - Problem management, workload management, change management

Autonomic system science

- Emergent self-* properties
- Autonomic system architectures and prototypes
- Human interface
 - Human studies
 - Policy

12

See my paper in the ICSE 2005 proceedings for detailed Research challenges in each of these areas.

Taxonomy of Autonomic Computing Research at IBM

- Autonomic elements
 - Specific autonomic elements
 - Database, storage, network, server, client, ...
 - Generic autonomic element technologies
 - Modeling, analysis, forecasting, optimization, planning, feedback control, learning
 - Generic autonomic element architectures, tools, and prototypes
- Autonomic systems
 - Autonomic system technologies
 - Problem management, workload management, change management
 - Autonomic system architectures and prototypes
 - Autonomic system science
 - Emergent self-* properties
- Human interface
 - Human studies
 - > Policy

1

Outline

- Background
- AC Research at IBM
 - > Overview
 - Unity, a Prototype Autonomic Data Center
- AC Research Challenges
- Conclusions

			- 4	
_	-	_		-
			-	
	_	_		=
_	_	_		_
_				-

Unity: A Prototype Autonomic Data Center

D. Chess et al. IBM Research, Watson

- We have implemented several architectural ideas and AC technologies in a prototype data center
- Features

15

Composed entirely of interacting autonomic elements

Autonomic elements constructed using AC Toolkit

Demonstrates

Utility-based resource arbitration

ICSE, May 18, 2005

IBM Research, Watson

IBM Research

Multi-agent System Architecture

S. White et al.

- Autonomic elements are IT components that:
 - Manage their own low-level behavior in accordance with
 - policies, agreements, management relationships
 - Establish and honor service agreements with other elements
- System-level autonomic behavior arises from:
 - Interactions (service-oriented, agent-oriented)
 - Founded on Web Services, Grid Services
 - System integration components (registries, sentinels, ...)
 - System design patterns
- Interactions and agreements are, in general:
 - Dynamic, flexible in pattern

Performance

_	
-	

Autonomic Manager ToolSet

W. Arnold et al. IBM Research, Watson

- Facilitates autonomic mgr construction
- Catcher for generic AM technologies
 - Monitoring standards and technologies
 - Al tools for knowledge representation, reasoning, planning
 - Math libraries for modeling, optimization
 - Policy tools
 - > OGSI (Globus 3.0 beta) -> WSRF
- AMTS V1.0 available on IBM alphaWorks (www.alphaworks.ibm.com)
- Evolving to Eclipse base
- Being used by several vendors to construct autonomic components

An Autonomic Element

ICSE, May 18, 2005

Goal-Driven Self-Assembly

A Design Pattern for Self-Configuration in Autonomic Systems

Ξ	-		
		Ξ.	
_	-		

Self-Healing Clusters

A Design Pattern for Self-Healing in Autonomic Systems

- Their state is mirrored for consistency
- A sentinel monitors their availability
- If an instance goes down ...

.

- The sentinel notifies the application manager
- The application manager arranges for a new instance of S
- The new instance is integrated into the cluster
- ... and the sentinel begins monitoring it

ICSE, May 18, 2005

Utility-Function-Driven Resource AllocationR. Das, J. Kephart,Design Pattern for Self-Optimization in Autonomic SystemsG. Tesauro, W. WalshIBM Research, Watson

- Multiple customers with independent time-varying workloads
- Maximize payments specified in Service Level Agreements (SLAS), or SLOs
 - Dynamically tune individual components (memory, bandwidth, CPU share, threads,...)
 - Dynamically shift server resources across workloads

IBM Research

_	_		= =	_
Ξ	Ε	2		E
	-	-	Ę	

WAS XD Configuration by Administrator

_			_	
			_	
	-	_		-
			-	
			-	
_				_

WAS XD Utility Function Combination

Approach 1: Performance Modeling using Queuing Theory

- Application estimates how extra/less resource would affect performance
 - > Apply an appropriate queuing model (e.g. M/M/k); estimate its parameters
 - Use model to predict new steady-state if amount of resource changes

TBM

Approach 2: Local Reinforcement Learner in each Application Manager

IBM Research

- RL learns by observation how Value depends on Demand and Resource (# servers)
- Learns *long-range* expected value function
 V(state, action) = V(D, R)

- Several theoretical and practical issues
 - Will learning converge?
 - Multiple learners
 - Non-Markov
 - Is learning fast enough?
 - Exploration penalties

RL Works!

Results of overnight training ($\sim 25k$ RL updates = 16 hours real time) with random initial condition

Resource Allocation Results

Performance-Availability Tradeoffs using Utility Functions

with J. Strunk, B. Salmon, G. Ganger, CMU

Cost Function for Trace Processing Application

Outline

29

- Background
- AC Research at IBM
- AC Research Challenges
 - Autonomic elements
 - Specific autonomic elements
 - Generic autonomic element technologies
 - Generic autonomic element architectures, tools, and prototypes

Autonomic systems

- Autonomic system technologies
- Autonomic system architectures and prototypes
- Autonomic system science

Human interface

- Human studies
- Policy
- Conclusions

Challenge: Learning Generic AE+AS technologies

Establish theoretical foundation for understanding and performing learning and optimization in multi-agent systems.

- Single element level
 - AE needs to learn a model of itself and environment quickly
 - > Deal with noisy, dynamic environments
 - On-line, so exploration of parameter space can be costly and/or harmful
 - Cope with several dozens to hundreds of tunable parameters
- System level
 - Multi-agent system: several interacting learners
 - What are good learning algorithms for cooperative, competitive systems?
 - What are conditions for stability?
 - What is sensitivity to perturbations?

P. Stone U. Texas, Austin

Challenge: Practical Planning for Self-Configuration, Self-Healing, ... Generic AE+AS technologies J. Hellerstein et al. Watson

 _	
_	
-	
_	

Challenge: Architecture AE+AS architectures

- AE level: Coordinate multiple threads of activity
 - AE's live in complex environments
 - Multiple task instances and types
 - Concurrent, asynchronous
 - Multiple interacting expert modules
 - Conflict resolution
- **System level**: Enable more flexible, serviceoriented patterns of interaction
 - How decentralized can/should we make it?
 - Multi-agent architecture
 - Representing and reasoning about needs, capabilities, dependencies

Define set of fundamental architectural principles from which self-* emerges

An Autonomic Element

Challenge: Problem Management Generic AS technologies

H. Lee IBM Research, Watson

	100	4				- Alternation
18 Q	ARE		00	00	T _C	
			53	Ea		
			 -			-

Challenge: Negotiation Generic AS technologies, AS science

- Develop and analyze
 - Methods for expressing or computing preferences
 - Negotiation protocols
 - Negotiation algorithms
- Establish theoretical foundation for negotiation
 - Explore conditions under which to apply
 - Bilateral
 - Multi-lateral (mediated, or not)
 - Supply-chain
 - Study how system behavior depends on mixture of negotiation algorithms in AE population

Performance Manager Storage Database System

Server

Challenge: Control and Harness Emergent Behavior AS science

- Understand, control, exploit emergent behavior in autonomic systems
 - How do self-*, stability, etc. depend on
 - Behaviors and goals of the autonomic elements
 - Pattern and type of interactions among AEs
 - External influences and demands on system
 - Invert relationship to attain desired global behavior
 - How?
 - Are there fundamental limits?
- Develop theory of interacting feedback loops
 - Hierarchical
 - Distributed

Challenge: Policy and Human-System Studies

Human interface

P. Maglio, E. Kandogan, R. Barrett IBM Research, Almaden

Human interface

- How do/could sysadmins work; what do they need
- Authoring and understanding policies
- "What-if" analyses
- Avoiding or ameliorating specification errors
- Iterative elicitation of preferences, tradeoffs
- Universal representation and grammar
 - Many different application domains, disciplines
 - Connections among rules, goals, utility functions?
- Algorithms that operate upon policies
 - Derive lower-level policies from high-level policies
 - Derive actions from goals (e.g. planning, optimization)
- Conflict detection, resolution
 - Both design time and run time
 - > Protocols, interfaces, algorithms

S. Greene, P. Matchen IBM Research, Watson

"IF (workload > 10/sec) THEN (Add CPU)"

"Avg RT < 200 msec"

A. Dan, S. Calo Watson

Conclusions

- Autonomic Computing is a grand challenge, requiring advances in several fields of science and technology
 - > Architecture, Systems, Software Engineering
 - Modeling, Optimization
 - Artificial Intelligence: planning, learning, knowledge representation, multi-agent systems, negotiation, emergent behavior
 - Human-system interfaces and Policy
- Integrating these technologies to support self-management in complex, realistic environments is a research challenge in itself
 - What are the best architectures and design patterns?
 - Building system prototypes is key to developing and validating AC technology and architecture
- Two final googlisms:
 - AC is emerging as a new strategic goal for computer science and the IT industry
 - AC is being conducted at a wide variety of universities

Ξ	-		
	=	=	
<u> </u>	_		=7=

Additional Information

- International Conference on Autonomic Computing (ICAC '05)
 - > June 13-16, 2005 in Seattle
 - www.autonomic-conference.org
- A Vision of Autonomic Computing (Kephart and Chess)
 - IEEE Computer, January 2003
- Research Challenges of Autonomic Computing (Kephart)
 - ICSE 2005 proceedings
- Web site
 - General: www.research.ibm.com/autonomic
 - Utility functions: www.research.ibm.com/nedar