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1 Introduction

The tutorial is written for those who would like an introduction to reinforcement learning
(RL). The aim is to provide an intuitive presentation of the ideas rather than concentrate
on the deeper mathematics underlying the topic.

RL is generally used to solve the so-called Markov decision problem (MDP). In other
words, the problem that you are attempting to solve with RL should be an MDP or its
variant. The theory of RL relies on dynamic programming (DP) and artificial intelligence
(AI). We will begin with a quick description of MDPs. We will discuss what we mean by
“complex” and “large-scale” MDPs. Then we will explain why RL is needed to solve complex
and large-scale MDPs. The semi-Markov decision problem (SMDP) will also be covered.

The tutorial is meant to serve as an introduction to these topics and is based mostly on
the book: “Simulation-based optimization: Parametric Optimization techniques and rein-
forcement learning” [3]. The book discusses this topic in greater detail in the context of
simulators. There are at least two other textbooks that I would recommend you to read:
(i) Neuro-dynamic programming [1] (lots of details on convergence analysis) and (ii) Rein-
forcement Learning: An Introduction [8] (lots of details on underlying AI concepts). A more
recent tutorial on this topic is [7]. This tutorial has 2 sections:

• Section 2 discusses MDPs and SMDPs.

• Section 3 discusses RL.

By the end of this tutorial, you should be able to

• Identify problem structures that can be set up as MDPs / SMDPs.

• Use some RL algorithms.

We will not discuss how to use function approximation, but will provide some general
advice towards the end.

2 MDPs and SMDPs

The framework of the MDP has the following elements: (1) state of the system, (2) actions,
(3) transition probabilities, (4) transition rewards, (5) a policy, and (6) a performance metric.
We assume that the system is modeled by a so-called abstract stochastic process called the
Markov chain. When we observe the system, we observe its Markov chain, which is defined
by the states. We explain these ideas in more detail below.

State: The “state” of a system is a parameter or a set of parameters that can be used to
describe a system. For example the geographical coordinates of a robot can be used to
describe its “state.” A system whose state changes with time is called a dynamic system.
Then it is not hard to see why a moving robot produces a dynamic system.

Another example of a dynamic system is the queue that forms in a supermarket in front
of the counter. Imagine that the state of the queuing system is defined by the number of
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people in the queue. Then, it should be clear that the state fluctuates with time, and then
this is dynamic system.

It is to be understood that the transition from one state to another in an MDP is usually
a random affair. Consider a queue in which there is one server and one waiting line. In this
queue, the state x, defined by the number of people in the queue, transitions to x + 1 with
some probability and to x− 1 with the remaining probability. The former type of transition
occurs when a new customer arrives, while the latter event occurs when one customer departs
from the system because of service completion.

Actions: Now, usually, the motion of the robot can be controlled, and in fact we are interested
in controlling it in an optimal manner. Assume that the robot can move in discrete steps,
and that after every step the robot takes, it can go North, go South, go East, or go West.
These four options are called actions or controls allowed for the robot.

For the queuing system discussed above, an action could be as follows: when the number
of customers in a line exceeds some prefixed number, (say 10), the remaining customers are
diverted to a new counter that is opened. Hence, two actions for this system can be described
as: (1) Open a new counter (2) Do not open a new counter.

Transition Probability: Assume that action a is selected in state i. Let the next state be j.
Let p(i, a, j) denote the probability of going from state i to state j under the influence of
action a in one step. This quantity is also called the transition probability. If an MDP has
3 states and 2 actions, there are 9 transition probabilities per action.

Immediate Rewards: Usually, the system receives an immediate reward (which could be
positive or negative) when it transitions from one state to another. This is denoted by
r(i, a, j).

Policy: The policy defines the action to be chosen in every state visited by the system. Note
that in some states, no actions are to be chosen. States in which decisions are to be made,
i.e., actions are to be chosen, are called decision-making states. In this tutorial, by states,
we will mean decision-making states.

Performance Metric: Associated with any given policy, there exists a so-called performance
metric — with which the performance of the policy is judged. Our goal is to select the policy
that has the best performance metric. We will first consider the metric called the average
reward of a policy. We will later discuss the metric called average reward. We will assume
that the system is run for a long time and that we are interested in a metric measured over
what is called the infinite time horizon.
Time of transition: We will assume for the MDP that the time of transition is unity (1),
which means it is the same for every transition. Hence clearly 1 here does not have to mean
1 hour or minute or second. It is some fixed quantity fixed by the analyst. For the SMDP,
this quantity is not fixed as we will see later.

Let us assume that a policy named π is to be followed. Then π(i) will denote the action
selected by this policy for state i. Every time there is a jump in the Markov chain (of the
system under the policy in consideration), we say a transition (or jump) has occurred. It is

4

delosme
Barrer 

delosme
Texte tapé à la machine
discounted



important to understand that during a transition we may go from a state to itself !
Let xs denote the state of the system before the sth transition. Then, the following

quantity, in which x1 = i, is called the average reward of the policy π starting at state i.

ρi = lim
k→∞

E
[∑k

s=1 r(xs, π(xs), xs+1)|x1 = i
]

k
(1)

This average reward essentially denotes the sum of the total immediate rewards earned
divided by the number of jumps (transitions), calculated over a very long time horizon (that
is k assumes a large value.) In the above, the starting state is i and π(xs) denotes the action
in state xs. Also note that E[.] denotes the average value of the quantity inside the square
brackets.

It is not hard to show that the limit in (1) is such that its value is the same for any value
of x1, if the underlying Markov chains in the system satisfy certain conditions (related to
the regularity of the Markov chains); in many real-world problems such conditions are often
satisfied. Then

ρi = ρ for any value of i.

The objective of the average-reward MDP is to find the policy that maximizes the per-
formance metric (average reward) of the policy.

Another popular performance metric, commonly used in the literature, is discounted
reward. The following quantity is called the discounted reward of a policy π. Again, let xs
denote the state of the system before the sth jump (transition).

ψi = lim
k→∞

E

[
k∑

s=1

γs−1r(xs, π(xs), xs+1)

∣∣∣∣∣x1 = i

]
, (2)

where γ denotes the discount factor; this factor, γ, is less than 1 but greater than 0. Eqn.
(2) has a simple interpretation:

ψi = E[r(x1, π(x1), x2) + γr(x2, π(x2), x3) + γ2r(x3, π(x3), x4) + · · ·]

The discounted reward essentially measures the present value of the sum of the rewards
earned in the future over an infinite time horizon, where γ is used to discount money’s value.
We should point out that:

γ =

(
1

1 + µ

)1

, (3)

where µ is the rate of interest; the rate is expressed as a fraction here and not in percent.
When µ > 0, we have that 0 < γ < 1. It is worthwhile pointing out that in the MDP,
we have 1/(1 + µ) raised to the power 1 because in the MDP we assume a fixed rate of
discounting and that the time duration of each transition is fixed at 1. This mechanism thus
captures within the MDP framework the notion of time value of money.

The objective of the discounted-reward MDP is to find the policy that maximizes the
performance metric (discounted reward) of the policy starting from every state.

Note that for average reward problems, the immediate reward in our algorithms can be earned
during the entire duration of the transition. However, for the discounted problems, we will
assume that the immediate reward is earned immediately after the transition starts.
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The MDP can be solved with the classical method of dynamic programming (DP). How-
ever, DP needs all the transition probabilities (the p(i, a, j) terms) and the transition rewards
(the r(i, a, j) terms) of the MDP.

For Semi-Markov decision problems (SMDPs), an additional parameter of interest is the
time spent in each transition. The time spent in transition from state i to state j under
the influence of action a is denoted by t(i, a, j). To solve SMDPs via DP one also needs
the transition times (the t(i, a, j) terms). For SMDPs, the average reward that we seek to
maximize is defined as:

ρi = lim
k→∞

E
[∑k

s=1 r(xs, π(xs), xs+1)|x1 = i
]

E
[∑k

s=1 t(xs, π(xs), xs+1)|x1 = i
] . (4)

(Technically, lim should be replaced by lim inf everywhere in this tutorial, but we will not
worry about such technicalities here.) It can be shown that the quantity has the same limit
for any starting state (under certain conditions). A possible unit for average reward here is
$ per hour.

For discounted reward, we will, as stated above, assume the immediate reward is earned
immediately after the transition starts and does not depend on the duration of the transition.
Thus, the immediate reward is a lumpsum reward earned at the start of the transition (when
the immediate reward is a function of the time interval, see instead the algorithm in [2]).
Also, because of the variability in time, we will assume continuously compounded rate of
interest. Then, we seek to maximize:

ψi = lim
k→∞

E

[
r(x1, π(x1), x2) +

k∑
s=2

r(xs, π(xs), xs+1)
∫ τs+1

τs
e−µτdτ

∣∣∣∣ x1 = i

]
,

where e−µτ denotes the discounting factor over a period of length τ (under continuous com-
pounding) and τs is the time of occurrence of the sth jump (transition). Note that since
the immediate reward does not depend on the time τ , it can be taken out of the integral.
Essentially, what we have above is the sum of discounted rewards with the discount factor
in each transition appropriately calculated using the notion of continuous compounding.

Curses: For systems which have a large number of governing random variables, it is often
hard to derive the exact values of the associated transition probabilities. This is called the
curse of modeling. For large-scale systems with millions of states, it is impractical to store
these values. This is called the curse of dimensionality.

DP breaks down on problems which suffer from any one of these curses because it needs
all these values.

Reinforcement Learning (RL) can generate near-optimal solutions to large and complex
MDPs. In other words, RL is able to make inroads into problems which suffer from one or
more of these two curses and cannot be solved by DP.

3 RL

We will describe a basic RL algorithm that can be used for average reward SMDPs. Note
that if t(i, a, j) = 1 for all values of i, j, and a, we have an MDP. Hence our presentation will
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be for an SMDP, but it can easily be translated into that of an MDP by setting t(i, a, j) = 1
in the steps.

It is also important to understand that the transition probabilities and rewards of the
system are not needed if any one of the following is true:

1. we can play around in the real world system choosing actions and observing the rewards

2. if we have a simulator of the system.

The simulator of the system can usually be written on the basis of the knowledge of
some other easily accessible parameters. For example, the queue can be simulated with the
knowledge of the distribution functions of the inter-arrival time and the service time. Thus
the transition probabilities of the system are usually not required for writing the simulation
program.

Also, it is important to know that the RL algorithm that we will describe below requires
the updating of certain quantities (called Q-factors) in its database whenever the system
visits a new state.

When the simulator is written in C or in any special package such as ARENA, it is possible
to update certain quantities that the algorithm needs whenever a new state is visited.

Usually, the updating that we will need has to be performed immediately after a new
state is visited. In the simulator, or in real time, it IS possible to keep track of the state of
the system so that when it changes, one can update the relevant quantities.

The key idea in RL is store a so-called Q-factor for each state-action pair in the system.
Thus, Q(i, a) will denote the Q-factor for state i and action a. The values of these Q-factors
are initialized to suitable numbers in the beginning (e.g., zero or some small number to all the
Q-factors). Then the system is simulated (or controlled in real time) using the algorithm. In
each state visited, some action is selected and the system is allowed to transition to the next
state. The immediate reward (and the transition time) that is generated in the transition
is recorded as the feedback. The feedback is used to update the Q-factor for the action
selected in the previous state. Roughly speaking if the feedback is good, the Q-factor of
that particular action and the state in which the action was selected is increased (rewarded)
using the Relaxed-SMART algorithm. If the feedback is poor, the Q-factor is punished by
reducing its value.

Then the same reward-punishment policy is carried out in the next state. This is done
for a large number of transitions. At the end of this phase, also called the learning phase,
the action whose Q-factor has the highest value is declared to be the optimal action for that
state. Thus the optimal policy is determined. Note that this strategy does not require the
transition probabilities.

3.1 Average reward

We begin with average reward. The algorithm that we will describe is called R-SMART
(Relaxed Semi-Markov Average reward Technique). The original version in [5] required that
the average reward be initialized to a value close to its optimal value. We present here a
modified version from [4] that does not require this. We first present the CF-version of R-
SMART, where CF stands for the contraction factor. We will later present another version
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of this algorithm.

Steps in CF-version of R-SMART:

The steps in the Learning Phase are given below.

• Step 1: Set the Q-factors to some arbitrary values (e.g. 0), that is:

Q(i, a)← 0 for all i and a.

Set the iteration count, k, to 1. Let ρk denote the average reward in the kth iteration
of the algorithm. Set ρ1 to 0 or any other value. Let the first state be i. Let A(i)
denote the set of actions allowed in state i. Let αk denote the main learning rate in the
kth iteration. Selecting a value for α (or any learning rate/step size) is a topic that we
discuss below. Let βk denote the secondary learning rate. Also set the following two
quantities to 0: total reward and total time. ITERMAX will denote the number of
iterations for which the algorithm is run. It should be set to a large number. Set η, a
scaling constant, to a small positive value, which is close to but less than 1, e.g., 0.99.

• Step 2: Determine the action associated to the Q-factor that has the highest value in
state i. (Imagine there are two actions in a state i and their values are Q(i, a) = 19
and Q(i, 2) = 45; the clearly action 2 has the greatest Q-factor.) This is called the
greedy action. Select the greedy action with probability (1−p(k)), where for instance
p(k) could be defined as follows:

p(k) =
G1

G2 + k

in which G2 > G1, and G1 and G2 are large positive constants, e.g., 1000 and 2000
respectively. With a probability of p(k), choose one of the other actions. This can
be done easily. The non-greedy actions are called exploratory actions, and selecting
an exploratory action is called exploration. It should be clear that our probability of
exploration will decay with k, the iteration number, and it should. (For the two-action
case, you can generate a random number between 0 and 1. If the number is less than
or equal to (1− pk), choose the greedy action; otherwise, choose the other action.)

Let the action selected be denoted by a. If a is a greedy action, set ϕ = 0 (this means
that the action selected is greedy with respect to the Q-factor.) Otherwise, set ϕ = 1.
Simulate action a.

• Step 3: Let the next state be denoted by j. Let r(i, a, j) denote the transition reward
and t(i, a, j) denote the transition time. Then update Q(i, a) as follows:

Q(i, a)← (1− αk)Q(i, a) + αk

[
r(i, a, j)− ρkt(i, a, j) + η max

b∈A(j)
Q(j, b)

]
.

In the above, maxb∈A(j)Q(j, b) is essentially the maximum numeric value of all the
Q-factors in state j. The value of αk should be selected appropriately. See the next
subsection for a discussion on learning rate rules.
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• Step 4: If ϕ = 1, that is the action was non-greedy, go to Step 5. Otherwise, update
total reward and total time as follows.

total reward ← total reward + r(i, a, j),

total time ← total time + t(i, a, j).

Then update the average reward as:

ρk+1 ← (1− βk)ρk + βk

[
total reward

total time

]
,

where β is chosen using a rule that decays to 0 faster than α. The next subsection
discusses how appropriate values for α and β can be chosen.

• Step 5: Increment k by 1. Set: i← j. If k < ITERMAX, return to Step 2. Otherwise,
declare the action for which Q(i, .) is maximum to be the optimal action for state i (do
this for all values of i, i.e., for all states to generate a policy), and STOP.

Note that in the above, the exploration probability p(k) gradually decays to 1, and in
the limit, the algorithm selects the greedy actions. However, this decay should be gradual.
If the decay is very quick (e.g., you use small values for G1 and G2), the algorithm will most
likely converge to an incorrect solution. In other words, the algorithm should be allowed to
explore sufficiently.

Further note: η is a positive scalar selected by the user such that 0 < η < 1. The positive
scalar η has to be less than 1; it is the contracting factor (CF) that enables the algorithm to
converge gracefully to the optimal solution. Its value should be as close to 1 as possible and
should not be changed during the learning. An example could be η = 0.99. For a sufficiently
large value of η, the algorithm is guaranteed to converge to the optimal solution. In practice,
η = 1 may also generate convergent behavior, but there is no known proof of this.

The next phase is called the frozen phase because the Q-factors are not updated here.
This phase is performed to estimate the average reward of the policy declared by the frozen
phase to be the optimal policy. (By optimal, of course, we only mean the best that RL can
generate; it may not necessarily be optimal, but hopefully is very similar to the optimal in
its performance.) Steps in the Frozen Phase are as follows.

• Step 1: Use the Q-factors learned in the Learning Phase. Set iteration count k to
0. ITERMAX will denote the number of iterations for which the frozen phase is
run. It should be set to a large number. Also set the following two quantities to 0:
total reward and total time.

• Step 2: Select for state i the action which has the maximum Q-factor. Let that action
be denoted by u. Simulate action b.

• Step 3: Let the next state be denoted by j. Let r(i, u, j) denote the transition reward
and t(i, u, j) denote the transition time.

Then update total reward and total time as follows.

total reward ← total reward + r(i, u, j),

total time ← total time + t(i, u, j).
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• Step 4: Increment k by 1. Set: i← j. If k < ITERMAX, return to Step 2. Otherwise,
calculate the average reward of the policy learned in the learning phase as follows:

ρ =
total reward

total time
,

and STOP.

The value of ρk in the learning phase can also be used as an estimate of the actual ρ
while the learning is on. But typically a frozen phase is carried out to get a cleaner estimate
of the actual average reward of the policy learned.

Steps in the SSP-version of R-SMART:
We now present the SSP-version of the algorithm, where SSP stands for the stochastic
shortest-path problem, a problem that we do not consider in this tutorial. The problem we
solve is not an SSP; the algorithm will use a connection to the SSP to solve our average
reward problem. Thus, this SSP-version is essentially going to solve the average reward
problem that we have considered above. The algorithm’s steps are identical to those of the
CF-version described above with two differences:

• Step 1: There is no need to select any value for η because η is not needed in this
algorithm. Further, choose any state in the system to be a distinguished state, and
then denote it by i∗.

• The main update in Step 3 will be as follows:

Q(i, a)← (1− αk)Q(i, a) + αk

[
r(i, a, j)− ρkt(i, a, j) + I(j ̸= i∗) max

b∈A(j)
Q(j, b)

]
.

In the above, I(j ̸= i∗) is the indicator function whose value can be calculated as
follows: I(j ̸= i∗) = 1 when j ̸= i∗ and I(j ̸= i∗) = 0 when j = i∗. Note that the
indicator function replaces η used in the CF-version.

Note that, in practice, the CF-version of R-SMART often outperforms the SSP-version,
although the SSP version can be shown to converge under milder conditions.

3.2 Selecting the learning rate or step size

The learning rate (α or β) should be a positive value typically less than 1. It is also a
function of k. We need to ensure some conditions on these rules for RL within simulators.
These are described in detail in [1]. Some commonly used examples of step-sizes are:

αk = a/(b+ k)

where for instance a = 90 and b = 100. Another rule is the log rule: log(k)/k (make sure k
starts at 2; otherwise use log(k + 1)/(k + 1) for k starting at 1) studied in [6]. The log rule
converges to 0 slower than the a/(b+ k) rule for many values of a and b.
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The rule 1/k where a = 1 and b = 0 may not lead to good behavior [6], although it
is still widely used and was also used by this author in some of his own prior work. (We,
obviously, do not recommend it any more, especially after the findings in [6] in the context
of Q-Learning).

When we have two step sizes like in R-SMART above, we must make sure that β converges
to 0 faster. We can then use α = log(k)/k and β = 90/(100 + k). Ideally, as k tends to ∞,
βk/αk should tend to 0.

3.3 Discounted reward

For discounted reward, the learning phase is sufficient. The steps we describe are from the
famous Q-Learning algorithm of Watkins [11]. They apply to the MDP; we will discuss the
SMDP extension later.

• Step 1: Set the Q-factors to some arbitrary values (e.g., 0), that is:

Q(i, a)← 0 for all i and a.

Let A(i) denote the set of actions allowed in state i. Let αk denote the main learning
rate in the kth iteration. Set k = 1. ITERMAX will denote the number of iterations
for which the algorithm is run. It should be set to a large number.

• Step 2: Select an action a in state i with probability 1/|A(i)|, where |A(i)| denotes
the number of elements in the set A(i). Simulate action a.

• Step 3: Let the next state be denoted by j. Let r(i, a, j) denote the transition reward
and t(i, a, j) denote the transition time. Then update Q(i, a) as follows:

Q(i, a)← (1− αk)Q(i, a) + αk

[
r(i, a, j) + γ max

b∈A(j)
Q(j, b)

]
,

where you should compute αk using one of the rules discussed above. Also, γ denotes
the discount factor.

• Step 4: Increment k by 1. Set: i← j. If k < ITERMAX, return to Step 2. Otherwise,
for each state i declare the action for which Q(i, .) is maximum to be the optimal action,
and STOP.

Note that in the algorithm above, there is no decay of exploration. This is because in
Q-Learning, the exploration need not decay. However, in practice, to get the algorithm to
converge faster, people do employ decay of exploration. It is only recommended in online
applications and not in simulators.

For the SMDP extension, you can use the following update in Step 3 of the above algo-
rithm (see pages 245-246 of [3] for more details):

Q(i, a)← (1− αk)Q(i, a) + αk

[
r(i, a, j) + e−µt(i,a,j) max

b∈A(j)
Q(j, b)

]
,
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where the exponential term arises as follows:

γτ =

(
1

1 + µ

)τ

≈ e−µτ .

in which τ denotes the time and the discounting mechanism was explained above in Equation
(3). Note that in the above approximation to obtain the exponential term, we use the fact
that µ is quite small.
Note on the vanishing discount approach: You can actually use a discounted RL algorithm
to solve the average reward problem via the vanishing discount approach. In this heuristic
approach, one uses a discounted algorithm with γ very close to 1 (for MDPs) and µ very
close to 0 (for SMDPs). This can work very well in practice.

3.4 Codes

Some MATLAB codes for these algorithms have been placed on the following website [9]:

http://web.mst.edu/~gosavia/mrrl_website.html

Codes in C have been placed at the following website:

http://web.mst.edu/~gosavia/bookcodes.html

4 Example

We end with a simple example from Gosavi [3]. Figure 1 shows a simple MDP; the legend
in the figure explains the transition rewards and probabilities. This is an average reward
problem on which you could use R-SMART. The optimal policy for this MDP is: action 2
in state 1 and action 1 in state 2. The average reward of the optimal policy is 10.56.

5 Conclusions

The tutorial presented above showed you one way to solve an MDP provided you have
the simulator of the system or if you can actually experiment in the real-world system.
Transition probabilities of the state transitions were not needed in this approach; this is the
most attractive feature of this approach.

We did not discuss what is to be done for large-scale problems. That is beyond the
scope of this tutorial. What was discussed above is called the lookup-table approach in which
each Q-factor is stored explicitly (separately). For large-scale problems, clearly it is not
possible to store the Q-factors explicitly because there is too many of them. Instead one
stores a few scalars, called basis functions, which on demand can generate the Q-factor for
any state-action pair. Function approximation when done improperly can become unstable
[3].

We can provide some advice to beginners in this regard. First, attempt to cluster states
so that you obtain a manageable state space for which you can actually use a lookup table.
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1 2

(1,0.7,6)

(2,0.9,10)

(1,0.6,12)

(2,0.8,13)

(2,0.1,17)

(1,0.3,-5)

(1,0.4,7)

(2,0.2,-14)

Legend:
(a,p,r): a = action
            p = transition     
                  probability
            r = immediate
                  reward

Figure 1: A two state MDP

In other words, divide the state space for each action into grids and use only one Q-factor
for all the states in each grid. The total number of grids should typically be a manageable
number such as 10, 000. If this does not work well, produce a smaller number of grids but
use an incremental Widrow-Hoff algorithm, that is, a neuron (see [3]), in each grid. If you
prefer using linear regression, go ahead because that will work just as well. If this works
well, and you want to see additional improvement, do attempt to use neural networks, either
neurons or those based on back-propagation [10]. It is with function approximation that you
can scale your algorithm up to realistic problem sizes.

I wish you all the best for your new adventures with RL, but cannot promise any help
with homework or term papers — sorry :-(
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