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Abstract

Self-managed systems are essentially closed loop control systems. When designing such systems we
should ensure that they do not allow fundamentally bad properties, too slow convergence, oscillation,
chaotic behaviour, stuck modes; just as for any control system. How can we perform these checks in the
presence of arbitrary (Turing complete) control functions? We argue that the space of control functions
and compositions should be restricted to those with known ‘good’ properties and demonstrate such a
space within cellular automata.

1 Introduction

As systems are growing more complex their control and configuration requirements frequently exceeds the
comprehension and ability of their operators. Indeed, there are circumstances, the classic being modern
fighter aircraft, where the system is designed ab initio to be uncontrollable by a human operator. The desire
to move control from the human to the system is rational. Humans have a limited response rate, often make
mistakes, are expensive to maintain, and difficult to train. In fact given all of these limitations it is unclear
why we have retained humans is so many control loops for so long. The main reason for maintaining humans
in management (or control) situations is their flexibility. Any fixed control system will only respond in the
way in which it is designed, it cannot be aware of wider goals which can often be in conflict with its current
control response. In almost all complex systems there are unforeseen situations to which a closed control
system will not have a designed response.

It is important to remember that self-managed systems are actually closed loop control systems. They are
by definition, systems that make observations about their current state1, have the ability to control some
(rarely all) aspects of their behaviour with the aim of reaching some ‘good’ (or even optimal state) and then
repeat. The previous statement is simply the description of closed loop control. However, with such control
systems there is a clear requirement to demonstrate that the control achieves the designers intent. This is
of paramount importance when the intention is to leave the system running without human intervention for
any extended period2. The rest of this paper will present a quick review of the observations from control
theory of a ‘good’ control system, discuss how this might be demonstrated in a complex self-managed system
and conclude with practical examples based on the exploitation of known cellular automata behaviour.

1This obviously can include environmental inputs
2An extended period in this setting can be very short, for a fighter aircraft about 2 seconds
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2 Control Theory Perspective

There are a well known list of properties that are essential for a control system to be considered ‘good’.
These are the results of centuries of engineering practice and have generally been incorporated as the result
of a disaster. A non- exhaustive list will certainly include:

1. convergence on the required solution over the whole input space;

2. adequate responsiveness;

3. stability of solution on stable inputs, no unnecessary oscillations;

4. no snap over on small changes of the inputs, ‘chaos’.

For small numbers of inputs and response controls this is a well understood problem, all-be it when the
control system is describable as a set of coupled differential equations. However, the question arises as to
what should replace this approach to deriving control system properties in a complex setting, in particular
where the control system uses coupling that cannot be easily analysed using differential equations or indeed
computations that cannot be described in this setting. There is a fundamental question as to whether we
should employ control systems that cannot be analysed and should we restrict ourselves to mathematically
analysable settings? There are further problems of potential higher order neglected factors in original model
and of the consequences of approximation. For instance the Lotka-Volterra equations of population dynamics
are not stable as a discrete probabilistic system and require the introduction of refuges.

There are two basic solution approaches to this problem. The first is to verify that any particular control
system has the required properties by employing the appropriate mathematics. In the case of control systems
whose nodes employ Turing complete levels of computation this is well known to be a difficult problem. The
second is to limit the set of measure-response functions in the control system so that they are known to have
the required properties in any setting. In the next section we outline how this can be achieved for cellular
automata. As an example of control on a cellular automata, consider the problem of maintaining a pattern
within the game of Life, given an arbitrary starting position and the ability either to set a limited number
of cells, or only to set cells occasionally.

3 Example Solution

Cellular automata make fascinating abstract, as well as practical example of systems that might be considered
to have ‘emergent’ properties. Cellular automata (CA) are discrete dynamic systems (space, time and state
values), with determinism and with local interaction. A CA is a finite dimensional lattice of sites whose
values are restricted to a finite set of integers. The value of any site at any time step is determined as a
function of the values of neighbouring sites at the previous time step and itself.

In one simple example of Life, space is represented by a uniform mesh of ‘processing’ cells. Each cell within
that space is connected to its eight nearest (surrounding) neighbours. Every cell executes a program that
exchanges a token (dead or alive) with these eight neighbours, and then alters its own token based upon the
number of ‘live’ neighbours that surround it. Too many neighbours and the cell ‘dies’ (over crowding), too
few and the cell also dies (loneliness), a critical number and a cell is ‘born’ (i.e. change token from dead to
alive).

Such a simple system, replicated across a large continuous surface gives rise to apparently complex behaviour
from simple seeds, as groups of cells are born, expand and die. Regular patterns of creation and dispersal
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appear to occur spontaneously, and in many systems, stable recurring patterns become established. It is the
observation that recurrent, stable ‘self organised’ structures have emerged from apparently trivial ‘rules’ of
computation and communication that have made CA of great interest as one model of parallel and distributed
computation.

Stability through self organisation on a massive scale has excited many researchers with an interest in
scalable, robust parallel systems. Indeed practical and robust implementations of load balancing and fault
kernels for operating systems, as well as telecommunications switching systems have been based on simple,
well understood automata designs. Observations on the rate of dispersion of system perturbations (through
load or fault conditions), combined with the required behaviour of system boundaries, for example, make
it possible to construct reliable statements about the upper and lower bounds of system performance and
degradation.

Unfortunately, life is not as rosy as one might think. If conventional computing and communication systems
are used to construct CA and their resultant behaviour examined, a simple qualitative distinction can be
made between them (sometimes referred within the research community as the class of the automata)

1. evolve to an homogenous state

2. evolve to simple, separated periodic structures

3. generate ‘chaotic’ aperiodic patterns

4. generate complex patterns of localised structures

While the forward problem - the description of properties of a given CA such as reversibility, invariants
and criticality are well worn with observation based analysis, the reverse problem, the development of a set
of techniques that that will generate a rule or a set of rules that can reproduce quantitative observations
is primitive in all but the simplest subset of systems (mainly, but not exclusively a subset of class 1 and
2 automata). The bulk of ‘successful’ reverse analyses make use of a combination of probabilistic search
strategies with forward experimental checking. For large systems, especially those of types 3 and 4, the
limitations are obvious. Validation of design through simulation and/or construction is not practicable for
large (and in the real world potentially expensive in both construction costs and the financial and social
implications of error) systems. Successful commercial systems that do rely on CA stability typically live in
the class 1 and 2 domains, where stability may often (but not always) be predicted analytically.

4 Conclusions

Whilst it is tempting, given the ‘emulate anything theorem’, the presence of Turing complete systems in
a closed loop control system is extremely dangerous. It is very difficult to demonstrate the absence of
unsatisfactory control behaviour in systems that employ such measure-response functions. Restricted models
of computation can give ‘good’ solutions by construction, even with distributed solutions as the example
from cellular automata demonstrated. Given the cost of validating control systems that are constructed ad
hoc from an arbitrary underlying computation framework, and the risk that such a validation may well be
incomplete, should this be a domain of control? Given the need for large numbers of control systems, and
the speed with which the demands on the designer vary, it is clearly imperative that we derive as wide a
class as possible of compositions and control functions that are inherently ‘good’; instead of relying on the
skills of a human designer and the observation of successful behaviour on a limited number of simulation
exercises.
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