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Abstract

The high cost of operating large computing installations
has motivated a broad interest in reducing the need for hu-
man intervention by making systems self-managing. This
paper explores the extent to which control theory can pro-
vide an architectural and analytic foundation for building
self-managing systems, either from new components or lay-
ering on top of existing components. Further, we propose
a deployable testbed for autonomic computing (DTAC) that
we believe will reduce the barriers to addressing key re-
search problems in autonomic computing. The initial DTAC
architecture is described along with several problems that
it can be used to investigate.

1 Introduction

The high cost of ownership of computing systems has
resulted in a number of industry initiatives to reduce the
burden of operations and management. Examples include
IBM’s Autonomic Computing, HP’s Adaptive Infrastruc-
ture, and Microsoft’s Dynamic Systems Initiative. All of
these efforts seek to reduce operations costs by increased
automation, ideally to have systems be self-managing with-
out any human intervention (since operator error has been
identified as a major source of system failures [1]). While
the concept of automated operations has existed for two
decades (e.g., [2]) as a way to adapt to changing workloads,
failures and (more recently) attacks, the scope of automa-
tion remains limited. We believe this is in part due to the
absence of a fundamental understanding of how automated
actions affect system behavior, especially system stability.
Other disciplines such as mechanical, electrical, and aero-
nautical engineering make use of control theory to design
feedback systems. This paper uses control theory as a way
to identify a number of requirements for and challenges in
building self-managing systems, either from new compo-
nents or layering on top of existing components.

The IBM Autonomic Computing Architecture [3] pro-
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Figure 1. Architecture for Autonomic Computing.

vides a framework in which to build self-managing sys-
tems. We use this architecture since it is broadly consis-
tent with other approaches that have been developed (e.g.,
[4]). Figure 1 depicts the components and key interactions
for a single autonomic manager and a single resource. The
resource (sometimes called a managed resource) is what is
being made more self-managing. This could be a single sys-
tem (or even an application within a system), or it may be a
collection of many logically related systems. Sensors pro-
vide a way to obtain measurement data from resources, and
effectors provide a means to change the behavior of the re-
source. Autonomic managers read sensor data and manipu-
late effectors to make resources more self-managing. The
autonomic manager contains components for monitoring,
analysis, planning, and execution. Common to all of these
is knowledge of the computing environment, service level
agreements, and other related considerations. The mon-
itoring component filters and correlates sensor data. The
analysis component processes these refined data to do fore-
casting and problem determination, among other activities.
Planning constructs workflows that specify a partial order
of actions to accomplish a goal specified by the analysis
component. The execute component controls the execution
of such workflows and provides coordination if there are
multiple concurrent workflows. (The term “execute” may
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be broadened to “enactment” to include manual actions as
well.) Note scaling is achieved by having a single auto-
nomic manager control multiple resources and by applying
the architecture recursively so that lower level managers are
treated as resources by higher level managers.

In essence, the autonomic computing architecture pro-
vides a blue print for developing feedback control loops for
self-managing systems. This observation suggests that con-
trol theory might provide guidance as to the structure of and
requirements for autonomic managers.

Many researchers have applied control theory to comput-
ing systems. In data networks, there has been considerable
interest in applying control theory to problems of flow con-
trol, such as [5] who develops the concept of a Rate Allocat-
ing Server that regulates the flow of packets through queues.
Others have applied control theory to short-term rate varia-
tions in TCP (e.g., [6]) and some have considered stochastic
control [7]. Control theory has also been applied to mid-
dleware to provide service differentiation and regulation of
resource utilizations (e.g., [8]), with considerations for non-
linearities [9] and including multiple-input, multiple-output
control [10]. More recently, there has been impact on soft-
ware products, such as the use of control theory to regulate
administrative utilities in IBM’s DB2 [11].

The foregoing illustrates the value of using control the-
ory to construct self-managing systems. We take this a step
further and explore control theory as a way to guide the de-
velopment of autonomic systems. To this end, the paper has
three goals. First, we seek to educate systems oriented com-
puter science researchers and practitioners on the concepts
and techniques needed to apply control theory to comput-
ing systems. Second, we describe how control theory can
aid in building self-managing systems (possibly layered on
top of legacy systems), and we identify the challenges in
doing so. Last, we propose a deployable testbed for au-
tonomic computing that is intended to foster research that
addresses the challenges identified. The remainder of the
paper is structured along the lines of these goals, with Sec-
tion 2, Section 3, and Section 4 addressing each in turn. Our
conclusions are contained in Section 5.

2 Control Theory Background

This section provides background on control theory and
relates control theory to self-managing systems.

2.1 Components of a Control System

Over the last forty years, control theory has developed a
fairly simple reference architecture (e.g., [12]). This archi-
tecture is about manipulating a target system to achieve a
desired objective. The component that manipulates the tar-
get system is the controller. In terms of Figure 1, the target

Target
SystemController

Control
Input

Reference
Input

Measured
Output

Transduced
Output

Transducer

Disturbance
Input

+

−

Control
Error

Noise
Input

Figure 2. Block diagram of a feedback control system.

system is a resource, the controller is an autonomic man-
ager, and the objective is part of the knowledge.

The essential elements of feedback control system are
depicted in Figure 2. These elements are:

• reference input, which is the desired value of the mea-
sured output (or transformations of them), such as
CPU utilization should be 66%. Sometimes, the ref-
erence input is referred to as desired output or the set-
point.

• control error, which is the difference between the ref-
erence input and the measured output.

• control input, which is a parameter that affects the be-
havior of the target system and can be adjusted dy-
namically (such as the MaxClients parameter in the
Apache HTTP Server).

• controller, which determines the setting of the control
input needed to achieve the reference input. The con-
troller computes values of the control input based on
current and past values of control error.

• disturbance input, which is any change that affects the
way in which the control input influences the measured
output (e.g., running a virus scan or a backup).

• measured output, which is a measurable characteristic
of the target system such as CPU utilization and re-
sponse time.

• noise input, which is any affect that changes the mea-
sured output produced by the target system. This is
also called sensor noise or measurement noise.

• target system, which is the computing system to be
controlled.

• transducer, which transforms the measured output so
that it can be compared with the reference input (e.g.,
smoothing stochastics of the output).

The foregoing is best understood in the context of a
specific system. Consider a cluster of three Apache Web
Servers. The Administrator may want these systems to run
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at no greater than 66% utilization so that if any one of them
fails, the other two can immediately absorb the entire load.
Here, the measured output is CPU utilization. The con-
trol input is the maximum number of connections that the
server permits as specified by the MaxClients parame-
ter. This parameter can be manipulated to adjust CPU uti-
lization. Examples of disturbances are changes in arrival
rates and shifts in the type of requests (e.g., from static to
dynamic pages).

While autonomic computing and control systems ad-
dress similar concerns, there are some important differences
as well. Autonomic computing has a strong emphasis on
software architectures, their realization, and interoperation
with legacy systems. For example, there is considerable fo-
cus on sensors and effectors so autonomic managers can
control resources.

In contrast, the emphasis in control theory is on analyz-
ing and/or developing components and algorithms such that
the resulting system achieves the control objectives. For ex-
ample, control theory provides design techniques for deter-
mining the values of parameters in commonly used control
algorithms so that the resulting control system is stable and
settles quickly in response to disturbances.

2.2 Objectives and Properties of Control Systems

Controllers are designed for some intended purpose. We
refer to this purpose as the control objective. The most com-
mon objectives are:

• regulatory control: Ensure that the measured output is
equal to (or near) the reference input. For example,
in a cluster of three web servers, the reference input
might be that the utilization of a web server should be
maintained at 66% to handle fail-over. If we add a
fourth web server to the cluster, then we may want to
change the reference input from 66% to 75%.

• disturbance rejection: Ensure that disturbances acting
on the system do not significantly affect the measured
output. For example, when a backup or virus scan is
run on a web server, the overall utilization of the sys-
tem is maintained at 66%. This differs from regulator
control in that we focus on changes to the disturbance
input, not to the reference input.

• optimization: Obtain the “best” value of the mea-
sured output, such as optimizing the setting of
MaxClients in the Apache HTTP Server so as to
minimize response times.

There are several properties of feedback control systems
that should be considered when comparing controllers for
computing systems. Our choice of metrics is drawn from

experience with commercial information technology sys-
tems. Other properties may be of interest in different set-
tings. For example, [13] discusses properties of interest for
control of real-time systems.

Below, we motivate and present the main ideas of the
properties considered.

• A system is said to be stable if for any bounded input,
the output is also bounded. Stability is typically the
first property considered in designing control systems
since unstable systems cannot be used for mission crit-
ical work.

• The control system is accurate if the measured output
converges (or becomes sufficiently close) to the refer-
ence input. Accurate systems are essential to ensuring
that control objectives are met, such as differentiating
between gold and silver classes of service and ensur-
ing that throughput is maximized without exceeding
response time constraints. Typically, we do not quan-
tify accuracy. Rather, we measure inaccuracy. For a
system in steady state, its inaccuracy, or steady state
error is the steady state value of the control error.

• The system has short settling times if it converges
quickly to its steady state value. Short settling times
are particularly important for disturbance rejection in
the presence of time-varying workloads so that conver-
gence is obtained before the workload changes.

• The system should achieve its objectives in a manner
that does not overshoot. Consider a system in which
the objective is to maximize throughput subject to the
constraint that response time is less than one second,
which is often achieved by a regulator that keeps re-
sponse times at their upper limit so that throughput is
maximized. Suppose that incoming requests change
so that they are less CPU intensive and hence response
times decrease to 0.5 seconds. Then, by avoiding over-
shoot, we mean that as the controller changes the con-
trol input that causes throughput to increase (and hence
response time to increase), response times should not
exceed one second.

Much of our application of control theory is based on the
properties of stability, accuracy, settling time, and over-
shoot. We refer to these as the SASO properties.

To elaborate on the SASO properties, we consider what
constitutes a stable system. For computing systems, we
want the output of feedback control to converge, although it
may not be constant due to the stochastic nature of the sys-
tem. To refine this further, computing systems have oper-
ating regions (i.e., combinations of workloads and configu-
ration settings) in which they perform acceptably and other
operating regions in which they do not. Thus, in general,
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Figure 3. Response of a stable system to a step change in
the reference input. At time 0, the reference input changes
from 0 to 2. The system reaches steady state when its output
always lies between the light weight dashed lines. Depicted
are the steady state error (ess), settling time (ks), and max-
imum overshoot (MP).

we refer to the stability of a system within an operating re-
gion. Clearly, if a system is not stable, its utility is severely
limited. In particular, the system’s response times will be
large and highly variable, a situation that can make the sys-
tem unusable.

If the feedback system is stable, then it makes sense to
consider the remaining SASO properties—accuracy, set-
tling time, and overshoot. The vertical lines in Figure 3
plot the measured output of a stable feedback system. Ini-
tially, the (normalized) reference input is 0. At time 0, the
reference input is changed to its steady value rss = 2. The
system responds and its measured output eventually con-
verges to yss = 3, as indicated by the heavy dashed line.
The steady state error ess is −1, where ess = rss − yss.
The settling time of the system ks is the time from the
change in input to when the measured output is sufficiently
close to its new steady state value (as indicated by the light
dashed lines). In the figure, ks = 9. The maximum over-
shoot MP is the (normalized) maximum amount by which
the measured output exceeds its steady state value. In the
figure, the maximum value of the output is 3.95 and so
(1 + MP)yss = 3.95, or MP = 0.32.

The properties of feedback systems are used in two ways.
The first relates to the analysis. Here, we are interested in
determining if the system is stable as well as measuring
and/or estimating its steady state error, settling time, and
maximum overshoot. The second is in the design of feed-
back systems. Here, the properties are design goals. That
is, we construct the feedback system to have the desired
values of steady state error, settling times, and maximum
overshoot. More details on applying control theory to com-
puting systems can be found in [14].

2.3 Control Analysis and Design

This subsection uses a running example to summarize an
approach to control analysis and design.

We consider the IBM Lotus Domino Server based on
work in [15]. To ensure efficient and reliable operation,
Administrators of this system often regulate the number
of remote procedure calls (RPCs) in the server, a quan-
tity that we denote by RIS. RIS roughly corresponds to
the number of active users (those with requests outstand-
ing at the server). Regulation is accomplished by using the
MaxUsers tuning parameter that controls the number of
connected users. The correspondence between MaxUsers
and RIS changes over time, which means that MaxUsers
must be updated almost continuously to achieve the control
objective. Clearly, it is desirable to have a controller that
automatically determines the value of MaxUsers based on
the objective for RIS.

Our starting point is to model how MaxUsers affects
RIS. The input to this model is MaxUsers, and the output
is RIS. We use u(k) to denote the k-th value of the former
and y(k) to denote the k-th value of the latter. (Actually,
u(k) and y(k) are offsets from a desired operating point.)
A standard workload was applied to a IBM Lotus Domino
Server running product level software in order to obtain
training and test data. In all cases, values are averaged over
a one minute interval. Based on these experiments, we con-
structed an empirical model (using least squares regression)
that relates MaxUsers to RIS.

y(k + 1) = 0.43y(k) + 0.47u(k) (1)

To better facilitate control analysis, Equation (1) is
put into the form of a transfer function, which is a Z-
transform representation of how MaxUsers affects RIS.
Z-transforms provide a compact representation for time
varying functions, where z represents a time shift operation.
The transfer function of Equation (1) is

0.47

z − 0.43

The poles of a transfer function are the values of z for which
the denominator is 0. It turns out that the poles determine
the stability of the system represented by the transfer func-
tion, and they largely determine its settling time. This can
be seen in Equation (1). Here, there is one pole, which is
0.43. The effect of this pole on settling time is clear if we
solve the recurrence in Equation (1). The result has the fac-
tors 0.43k+1, 0.43k, · · · . Thus, if the absolute value of the
pole is greater than one, the system is unstable. And the
closer the pole is to 0, the shorter the settling time. A pole
that is negative (or imaginary) indicates an oscillatory re-
sponse.
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3 Building Self-Managing Systems with Con-
trol Theory

This section describes how control theory can be used to
build self-managing systems (either from new components
or layering on top of existing components), and identifies
challenges in doing so. The material is structured in terms
of the components of the autonomic computing architecture
in Figure 1.

3.1 Modeling Resource Dynamics

It should be apparent from the methodology described in
Section 2.3, that control analysis and design is based on the
ability to model resources. This can be approached in sev-
eral ways, although the construction of system models for
resources remains a significant challenge in the successful
application of control theory to computing systems.

Considered first is a purely empirical approach that em-
ploys curve fitting to construct static system models; these
models do not address dynamics and typically only charac-
terize single input single output relationships. This has been
very effective in IBM’s mainframe systems [16].

The second approach to modeling is a black box method-
ology (a.k.a., system identification) such as that described
in Section 2.3. This approach requires: choosing an op-
erating point, designing appropriate experiments, and de-
veloping empirical models. This approach explicitly mod-
els system dynamics and is readily generalized to multi-
ple control inputs and measured outputs. For example, in
the Apache HTTP Server, there are two control inputs, the
maximum number of clients (denoted by MaxClients)
that controls the level of concurrency, and the keep alive
timeout (denoted by KeepAlive) that specifies how long
a connection to the server persists after the completing of
the last request on that connection. We consider two mea-
sured outputs, the utilization of the CPU (denoted by CPU)
and the utilization of memory (denoted by MEM). Since
MaxClients affects both CPU and MEM but KeepAlive
only affects CPU, we use the following model

yCPU (k) = aCPUyCPU (k − 1) + bCPUKA(k − 1)

+ cCPUMC(k − 1)

yMEM (k) = aMEMyMEM (k − 1) + bMEMMC(k − 1)

This model works well in studies we have conducted [10].
Still another approach is to develop special purpose mod-

els from first principles. An example of this is the first prin-
ciples analysis done for adaptive queue management in net-
work routers [17]. This approach involves a detailed un-
derstanding of the TCP/IP protocol and the development of
differential equations to estimate a transfer function.

3.2 Sensors

A significant focus in the management of computing sys-
tems is the choice of sensors, especially standardizing inter-
faces to sensors. The most widely used protocol for access-
ing sensor data in computing systems is the Simple Net-
work Management Protocol (SNMP) [18]. While this al-
lows for programmatic access, it has not addressed various
issues that are of particular concern for control purposes.
Among these are the following:

1. Typically, there are multiple measurement sources
(even on a single server) that produce both interval
and event data. Unfortunately, the intervals are often
not synchronized (e.g., 10 second vs. 1 minute vs. 1
hour), and missing data are common. Even worse, data
from different servers often come from clocks that are
unsynchronized (or worse still, are synchronized via
some complex protocol that converges over a longer
window).

2. Often, the metric that it is desirable to regulate is not
available. For example, end-to-end response times are
notoriously difficult and expensive to obtain. Thus,
surrogate metrics are often used such as CPU queue
length. Hence, it may well be that the surrogate is well
regulated but the desired metric is not.

3. There can be substantial overheads associated with
metric collection. For example, it can be quite infor-
mative to collect information about the resource con-
sumption of individual requests to a web server. How-
ever doing so may consume a substantial fraction of
server CPU. This results in another kind of control
problem—determining which measurements to collect
and at what frequency.

4. Often, the measurement system has built-in delays.
For example, response times cannot be reported un-
til the work unit completes. Sometimes, the mean
response time is about the same as the control inter-
val, which can lead to instabilities. Unpredictable de-
lays are common as well since measurement collection
is typically the lowest priority task and so is delayed
when high priority work arrives (which can be a criti-
cal time for the controller).

3.3 Effectors

One of the more challenging problems in the control en-
gineering of computing systems is that the set of available
effectors (actuators) often has a somewhat complex rela-
tionship with the measured output, especially in terms of
dynamics. We illustrate this problem by giving several ex-
amples.
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Consider again the IBM Lotus Domino Server with the
objective of controlling the number of active users RIS by
adjusting the number of connected users MaxUsers. As
noted previously, the number of connected users is not the
same as the number of active users. For example, dur-
ing lunch time, there may be many connected users, very
few of whom submit requests. Under these circumstances,
MaxUsers could be much larger than the number of active
users. On the other hand, during busy periods (e.g., close to
an end-of-month deadline), almost all connected users may
have submitted requests. In this case, MaxUsers may be
very close to the number of active users.

There is still another complication with MaxUsers.
The mechanism employed does not maintain a queue of
waiting requests to connect to the server. That is, if
MaxUsers is increased, there is no effect until the next re-
quest arrives. If requests are of short duration and are made
quickly, there is little delay. However, if requests occur at
a lower rate, then this effector introduces a dead time that
makes control more challenging.

Another example of a complex effector is the nice com-
mand used in UNIX systems. nice provides a way to ad-
just the priority of a process, something that is especially
important if there is a mixture of CPU intensive and non-
CPU intensive work in the system. In theory, nice can be
used to enforce service level agreements dealing with the
fraction of the CPU that a process receives. However, this
turns out to be complicated to do in practice because of the
way nice affects priorities. As shown in [19], this is non-
linear relationship that depends on the number of processes
competing for the CPU as well as the range of priority num-
bers used. Recognizing the limitations of using nice, spe-
cial purpose schedulers have been developed (e.g., [20]). In
essence, these approaches create a new, more rational set of
effectors.

A final example is the start-time fair queueing (SFQ) al-
gorithm. This resource management algorithm controls the
service delivered by a resource by controlling the priority
assigned to incoming requests [21]. Specifically, SFQ oper-
ates by tagging incoming work by class, and the tags deter-
mine the priority by which the request is processed. Unfor-
tunately, this mechanism has some subtle, load-dependent
characteristics that create challenges for designing control
systems. In particular, changing the tag assigned to a new
request has no effect until the requests ahead of it have been
processed. If load is light, there will be few such requests,
and so little dead time. However, if loads are heavy, dead
times could be substantial. If dead times can be predicted,
then compensation might be possible. Otherwise, the con-
trol performance of this effector can be impaired, possibile
resulting in stability problems. The latter arise because new
control actions are taken without considering the impact of
past actions, a situation that can result in an escalation of
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Figure 4. Architecture of the Deployable Testbed for Au-
tonomic Computing (DTAC).

over-reactions.

4 Deployable Testbed for Autonomic Com-
puting (DTAC)

This section describes a deployable Testbed for auto-
nomic computing. The Testbed addresses the following
challenge in pursuing research in autonomic computing.
Researchers tend to focus on one aspect of autonomic com-
puting such as control techniques, management middle-
ware, sensors, and effectors. However, to assess the value
of work in any one area, a complete system must be devel-
oped, which is a significant effort.

The foregoing motivates our interest in DTAC, a deploy-
able testbed for autonomic computing. DTAC is intended
to be a complete end-to-end system with pluggable compo-
nents so as to facilitate research in various aspects of au-
tonomic computing. For example, researchers focusing on
control algorithms need only modify these components, but
they would still have an end-to-end system to evaluate their
algorithms. Similarly, researchers primarily interested in
sensors and effectors could replace these elements and take
advantage of control algorithms implemented in the Test-
bed.

Figure 4 displays our initial architecture for DTAC.
There are four layers in the architecture, all of which are
intended to be pluggable. The operation of the Testbed is
as follows: (1) The Test Harness creates a request that is
sent to an HTTP server; (2) HTTP servers process requests,
forwarding to an Application Server those requests that re-
quire extensive processing; and (3) Application Servers for-
ward to a Database Server those requests that require data
intensive operations. To satisfy scaling requirements, one
or more tier of the eCommerce System may contain server
clusters with appropriate load balancing.

In terms of the autonomic computing architecture, the
eCommerce system is a set of resources. These resources
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have a variety of sensors for obtaining measurements and
effectors for controlling their behavior. For example, ef-
fectors of interest in the Apache HTTP server include the
KeepAlive timeout and the maximum number of clients.
Key effectors for the Database server might be the size of
memory pools for sorts and joins. Observe that there is a
natural hierarchy of resources that may well imply a hierar-
chy of managers of these resources. That is, the full eCom-
merce system provides statistics on end-to-end response
times and its main effector is based on traffic shaping. In
addition, there may be managers for clusters of servers that
provide sensors for relative utilizations of servers within the
cluster and an effector that determines how to balance load
among servers within the cluster.

The variety of different sensors and effectors motivates
the need for Manageability Middleware that virtualizes
these differences and provides commonly used functions.
In terms of the autonomic computing architecture, this cor-
responds to the monitoring and execution components in
the autonomic manager. Examples of Manageability Mid-
dleware include KinestheticsExtreme [4], IBM’s autonomic
computing Toolkit [22], and ControlWare [23]. We ex-
pect that the Manageability Middleware will incorporate
common functions, such as filtering events and maintaining
state.

The Controller Layer is primarily responsible for making
decisions and taking actions (although this layer may incor-
porate elements of analysis as well). As such, this layer
is the focal point for policy interpretation and enforcement.
We are considering a couple of possibilities for controllers
packaged with the Testbed including a PI (proportional in-
tegral) controller [24] and a fuzzy controller [25].

Last, the Test Harness provides the overall experimental
environment, including the generation of synthetic work-
load, data collection, a suite of tools for analyzing experi-
mental results, reporting and sending commands to all ele-
ments of the eCommerce System (e.g., for fault injection).
Workload generation is of particular concern since it has a
dramatic effect on the experimental results. Where possible,
we advocate the use of industry standard workloads, such
as those developed by the Transaction Processing Council
(TPC) and the Standard Performance Evaluation Corpora-
tion (SPEC). However, we recognize that there is no stan-
dard benchmark for some aspects of autonomic computing,
such as self-configuration and self-protection. Indeed, the
development of such benchmarks is an important area of
research.

We emphasize that Figure 4 depicts the layers in our
Testbed, not necessarily component instances. For example,
there may be separate instances of Manageability Middle-
ware for each server, along with their own Controller. And
there may be separate instances of Manageability Middle-
ware and Controllers for each server cluster.

Our goal is to develop an easily deployable package that
instantiates the above architecture in a way that researchers
can readily substitute their components and run experiments
to evaluate their technologies. For the eCommerce System,
we plan to use the Apache HTTP Server, the Tomcat Appli-
cation Server, and the PostgreSQL Database Server. All are
publically available, both the executables and the source.
Also, they are widely used in production systems.

We are in the early stages of discussion of the choice of
Manageability Middleware and Controller to distribute with
the Testbed. The intent is to use something simple. For
example, the Controller distributed with the Testbed might
be a classical multiple input multiple output (MIMO) con-
troller (e.g., [10]) that manipulates configuration parame-
ters in all three tiers. More generally, there are two main
requirements for components in the Testbed package. First,
the component should be sufficient to conduct experiments
on unrelated components. Second, components distributed
with the Testbed should illustrate the use of the APIs re-
quired for component pluggability.

The details of the Test Harness are still under consid-
eration. However, the workload driver will likely be the
TPC Web Workload (TPC-W) [26] since there is a publi-
cally available software driver.

5 Conclusions

This paper takes the position that control theory can pro-
vide an architectural and analytic foundation for building
self-managing systems, either from new components or lay-
ering on top of existing components. Our approach to es-
tablishing the architectural connection is to show the cor-
respondence between the elements of the IBM autonomic
computing architecture and those in the elements control
systems. For example, the sensors and effectors of the
autonomic architecture provide the measured outputs and
control inputs in control systems. The benefit of making
this connection is that control theory provides a rich set
of methodologies for building automation with properties
such as stability, short settling times, and accurate regula-
tion. This said, there remain considerable challenges in ap-
plying control theory to computing systems, such as devel-
oping reliable resource models, handling sensor delays, and
addressing lead times in effector actions. These challenges
motivate the need for broader engagement of the research
community in these areas.

The last observation has motivated our recent efforts
with developing DTAC, a deployable testbed for autonomic
computing. DTAC is intended to support the study of a wide
range of research problems related to automating the man-
agement of distributed systems. Examples of research ques-
tions include: (1) What sensors and effectors work best in
maintaining service level objectives? This can be investi-
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gated by modifying one or more of the eCommerce tiers.
(2) How can data from heterogeneous sensors be virtual-
ized in a way that supports the goal of end-to-end service
level management? This can be studied by developing ap-
propriate Manageability Middleware. (3) Which control
techniques best ensure end-to-end service level objectives?
This may involve a combination of pluggable Controllers
and selection of different sensors and effectors. (4) What is
required to better automate provisioning of distributed sys-
tems? This may entail modifications to the eCommerce,
Manageability Middleware, and Controller layers.
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