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Abstract. Cellular automata are usually updated synchronously and
thus deterministically. The question of stochastic dynamics arises in the
development of cellular automata resistant to noise [1] and in simulation
of real life systems [2]. Synchronous updates may not be a valid hypothe-
sis for such simulations and most of these studies use stochastic versions
of cellular automata.
In [3–6], the authors study different classes of cellular automata under
fully asynchronous dynamics (only one random cell fires at each time
step) and α-asynchronous dynamics (each cell has a probability α to fire
at each time step). They develop tools and methods to ease the study of
other cellular automata. In [4, 6], they analyze 2D Minority under fully
asynchronous dynamics for Von Neumann and Moore neighborhoods.
The behavior of this cellular automaton under these dynamics is surpris-
ingly rich. The energy of a configuration is an useful information. In [4],
it is proved that configurations of energy greater than 5mn

3
(where m and

n are the length and the width of the configuration) will not appear in
the long range behavior of 2D minority for Von Neumann neighborhood.
In this paper we improve this bound to 18dm

4
edn

4
e. The proof is based

on an enumeration of cases made by computer. This method could be
easily tuned for other cellular automata or neighborhoods.

1 Introduction

Cellular automata are attractive models for complex systems in various fields,
like physics, biology or social sciences. An example of challenging issue in biology
is to predict the expression of genes in a set of cells which share the same gene
regulatory network. Cellular automata can be used to model such systems [2, 7].
Classically cellular automata update synchronously. However models for natural
phenomena rather update asynchronously.

Empirical studies [8–10] have shown how widely the behavior can change
when introducing asynchronism. However only few mathematical analyses are
available and they mainly concern one-dimensional stochastic cellular automata
[3, 5, 11]. Providing analyses of 2D rules remains a real challenge. For instance the
mean-field approach does not succeed in approximating tightly such stochastic
dynamics [12]. The cellular automaton 2D Minority is studied under fully asyn-
chronous dynamics (at each time step only one random cell chosen uniformly
fires) in [4, 6]. 2D Minority is a rule with negative feedback. Such rules are ac-
knowledged to be harder to analyze [13]. In [4, 6] the authors develop tools for
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Fig. 4. The coupled evolutions of Minority δ on the primal configurations (ct) (above)
and its counterparts Outer-Totalistic 976 δ̂ on dual configurations (ĉt) (below). Note
that from step 50N on, (ct) an (ĉt) are bounded configurations.

corresponding dynamics δ and δ̂ are coupled probabilistically (see [14]): the same
random cell is fired in both configurations at each time step. A simple calculation
shows that the dual dynamics δ̂ associates to each dual configuration ĉ, a dual
configuration ĉ′ as follows: select uniformly at random a cell (i, j) (the same cell
(i, j) as δ fires on the primal configuration c) and set:

ĉ′ij =






1 if Σ ! 3
1− ĉij if Σ = 2

0 otherwise
with Σ = ĉi−1,j + ĉi+1,j + ĉi,j−1 + ĉi,j+1

and ĉ′kl = ĉkl for all (k, l) "= (i, j). It turns out that this rule corresponds to
the asynchronous dynamics of the cellular automaton Outer-Totalistic 976 [11].
The corresponding transitions are given in Fig. 2.
Stable configurations of Outer-Totalistic 976. We define the energy of
the dual configuration ĉ and the potentials of each of its cells (i, j) as the cor-
responding quantities, E(c) and vij , in the primal configuration c. By Proposi-
tion 5, the stable dual configurations under the dual dynamics δ̂ are the dual
configurations composed of homogeneous black or white bands of widths ! 2.
The two dual configurations of minimum energy 0 are all-white and all-black.

Experimentally, any dual configuration under the fully asynchronous dynam-
ics δ̂ evolves towards large homogeneous black or white regions (corresponding
to the checkerboard patterns in the primal configuration). Informally, these
regions evolve as follows (see Fig. 2): isolated points tend to disappear as well as
peninsulas; borders and surrounded points are stable; large regions are eroded
in a random manner from the corners or bridges that can be flipped reversibly
and their boundaries follow some kind of 2D random walks until large bands
without corners ultimately survive (see Fig. 4 or [12]).
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Fig. 1. A typical evolution of 2D Minority under fully asynchronous dynamics on a
configuration of N = 50× 50 cells.

studying 2D asynchronous cellular automata. Ongoing works show their results
hold for the classes of 2D Threshold cellular automata. This class has been
intensively studied under synchronous dynamics [14] and exhibits interesting
behaviors under fully asynchronous dynamics.

In this paper, we continue the study of 2D Minority under fully asynchronous
dynamics with Von Neumann neighborhood. Figure 1 shows a classical evolution
of fully asynchronous 2D Minority. In [4], it is proved that any initial configu-
ration will reach almost surely a stable configuration after O(N2N+1) steps on
expectation (where N is the number of cells of the configuration). Nevertheless it
is conjectured that this time is polynomial in N . The energy of a configuration is
useful to describe the behavior of 2D Minority. This notion was first introduced
in Ising model [15] or Hopfield networks [13]. In [4], it is shown that:

1. The energy of a configuration is between 0 and 4N .
2. The energy of a stable configuration is between 0 and N .
3. The energy is non-increasing according to time.
4. The energy drops below 5N/3 after O(N2) steps on expectations.
5. The dynamics converges almost surely to a stable configuration from an

initial bounded configuration in O(N2) steps on expectation. Bounded con-
figurations correspond to final steps of a classical execution of 2D Minority
(After step 50N the configurations of figure 1 are bounded configurations).

In this paper we improve point 4: the energy drops below 18dm
4 ed

n
4 e after

O(N2) steps on expectation (where m and n are the length and the width of
the configuration: N = mn). The proof relies on an enumeration of cases by
computer. Nevertheless, our method could be easily adapted for other cellular
automata or neighborhoods. Moreover, a more accurate bound could be found
with more precise computations (but cannot be lower than N because of point 2).
Finally our results is of interest to prove the conjecture. Only a small gap sepa-
rates configurations of energy less than 18dm

4 ed
n
4 e and bounded configurations.

2 Definitions

We consider in this paper the 2D 2-states cellular automaton Minority under
fully asynchronous dynamics over finite configurations with periodic boundary
conditions. Except for the main theorem, all notations and results are introduced
or proved in [4].
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Definition 1 (Configuration). We are given two positive integers n and m,
let N = nm. We denote by T = Zn × Zm the set of cells and Q = {0, 1} the
set of states (0 stands for white and 1 for black in the figures). We consider the
Von Neumann neighborhood: the neighbors of each cell (i, j) are the four cells
(i, j ± 1) and (i± 1, j). A n×m-configuration c is a function c : T→ Q; cij is
the state of the cell (i, j) in configuration c.

Definition 2 (Stochastic 2D Minority). We consider the fully asynchronous
dynamics of 2D Minority. Time is discrete and let ct denote the configuration
at time t; c0 is the initial configuration. The configuration at time t + 1 is a
random variable defined by the following process: a cell (i, j) is selected uniformly
at random in T and its state is updated to the minority state in its neighborhood
(we say that cell (i, j) fires at time t), all the other cells remain in their current
state:

ct+1
ij =

{
1 if (ct

ij+ct
i−1,j + ct

i+1,j + ct
i,j−1 + ct

i,j+1) ≤ 2
0 otherwise

and ct+1
kl = ct

kl for all (k, l) 6= (i, j). A cell is said active if its state would change
if fired.

Definition 3 (Potential). The potential vij of cell (i, j) is the number of its
neighboring cells in the same state as itself. By definition, if vij ≤ 1, then the
cell is in the minority state in its own neighborhood and is thus inactive (its
state will not change when fired); whereas, if vij ≥ 2 then the cell is active and
its state will change if fired.

Definition 4 (Energy). The energy E of configuration c is defined as: E =∑
(i,j)∈T vij.

Thus the energy of a configuration is positive and less than 4N . The next
fact shows that an energy drop is irreversible.

Proposition 1 (Energy is non-increasing). Under fully asynchronous dy-
namics, the energy is a non-increasing function of time and decreases each time
a cell with potential ≥ 3 fires.

The next theorem shows that configurations of high energy will not appear
in the long range behavior of 2D Minority. The next parts are dedicated to the
proof of this theorem.

Main Theorem 1 (Initial energy drop). The random variable T = min{t :
E(ct) < 18dm

4 ed
n
4 e} is almost surely finite and E[T ] = O(N2).

3 Proof

The proof is based on the correlation between high energy configurations and
local patterns. For example a configuration of energy higher than 3N has at
least a cell of potential greater than 3. Firing such a cell decreases the energy of



4

the configuration. The bound of 5N/3 proved in [4] was obtained by considering
two facts. Firing two adjacent cells in opposite states of potential 2 decreases the
energy of the configuration in two steps. Configurations of energy higher than
5N/3 admit at least a cell of potential 3 or two adjacent cells in opposite states
of potential 2. Here we formalize this approach.

3.1 Decreasing sequences

Definition 5 (decreasing sequence). Given a configuration c, a finite se-
quence S = (ci)1≤i≤j of cells (j is the length of the sequence) is a decreasing
sequence if firing the j cells c1 to cj leads to a configuration of lower energy after
j steps. The neighborhood N (S) of a sequence is a set containing the cells of the
sequence and their neighbors.

Note that if for a configuration c a decreasing sequence of length j exists then
there exist decreasing sequences of length k ≥ j. A sequence remains decreasing
by adding any cell at the end of the sequence.

Fact 2 (evolution of a decreasing sequence). Given a configuration ct and
a decreasing sequence S = (ci)1≤i≤j of length j. then :

– with probability 1
N the cell c1 fires : either the energy decreases or S ′ =

(ci)2≤i≤j is a decreasing sequence of ct+1.
– with probability |N (S)|−1

N a cell c0 of N (S) different from c1 fires : either the
potential of c0 is ≥ 3 and the energy drops or the potential of c0 is 2 and
S ′ = (ci)0≤i≤j is a decreasing sequence or the potential of c0 is ≤ 1 and S
is still a decreasing sequence.

– with probability N−|N (S)|
N a cell which is not in N (S) fires: the energy may

drop but S is still a decreasing sequence.

Definition 6 (hypothesis H(E, j)). We call H(E,j) the hypothesis that all
configurations of energy E admit a decreasing sequence of size less j.

Definition 7 (random walks RW j). Given j ∈ N∗ the random walk RW j

is a sequence of random variables (Xt)t≥0 taking their value in {0, . . . , j} such
that X0 = j and :

P (Xt+1 = Xt − 1) P (Xt+1 = Xt) P (Xt+1 = Xt + 1)
if Xt = 0 0 1 0

if Xt ∈ {1, . . . , j − 1} 1
N

N−5j
N

5j−1
N

if Xt = j 1
N

N−1
N 0

Fact 3. Given j ∈ N∗ and the random walk RW j = (Xt)t≥0 then T ′ = min{t|Xt =
0} is almost surely finite and E[T ′] = O(jjN).

Lemma 1. Consider a configuration c0 of energy E and j ∈ N, suppose that
H(E, j) is true then the random variable T = min{t : E(ct) < E} is almost
surely finite and E[T ] = O(jjN).
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Proof. The proof is based on a the coupling between (ct)t≥0 andRW j = (Xt)t≥0.
To define the coupling we need that at each time step t either E(ct) < E or
Xt = 0 or there exists a decreasing sequence S = (ci)1≤i≤Xt for configuration
ct. At each time step t we update Xt and ct according to the following coupling :
if E(Ct) < E or Xt = 0 then Xt updates according to the rule of the random
walk and independently fire a random cell of ct chosen uniformly. Otherwise
Xt = k with k 6= 0 and we consider a decreasing sequence St = (ci)1≤i≤k of ct

of size k and :

– if Xt = j, with probability


1
N Xt+1 = Xt − 1 and c1 fires.

N−1
N

Xt+1 = Xt and one cell is selected uni-
formly at random among the N − 1
other cells.

– if 0 < Xt < j, with prob.



1
N Xt+1 = Xt − 1 and c1 fires.

|N (S)|−1
N

Xt+1 = Xt+1 and one cell is selected
uniformly at random among N (S).

5j−|N (S)|
N

Xt+1 = Xt+1 and one cell is selected
uniformly at random among the N −
|N (S)| other cells.

N−5j
N

Xt+1 = Xt and one cell is selected
uniformly at random among the N −
|N (S)| other cells.

According to this coupling, each cell of ct is updated uniformly and Xt evolves
according to the rule of the random walk. Now we prove by recurrence over t
that this coupling is coherent that is to say that either E(ct) < E or Xt = 0 or
there exists a decreasing sequence S = (ci)1≤i≤Xt for configuration ct. At time
t = 0, X0 = j and since E(c0) = E then by H(E, j) there exists a decreasing
sequence of size j. Now if at time t :

– E(ct) < E then E(ct+1) < E since energy is non-increasing (see Proposition
1).

– Xt = 0 then Xt+1 = 0.
– Xt = j and E(ct) = E then by hypothesis of induction there exists a de-

creasing sequence S = (ci)1≤i≤j :
If Xt+1 = Xt then either E(ct+1) < E or E(ct+1) = E and by H(E, j) there
exists a decreasing sequence S ′ of size j.
If Xt+1 = Xt−1 then cell c0 fires and according to fact 2 either E(ct+1) < E
or E(ct+1) = E and (ci)2≤i≤j is a decreasing sequence.

– Xt = k where 0 < k < j and E(ct) = E then by hypothesis of induction
there exists a decreasing sequence S = (ci)1≤i≤k:
If Xt+1 = Xt then the fired cell is not in N (S) and either E(ct+1) < E or
E(ct+1) = E and S is still a decreasing sequence.
If Xt+1 = Xt−1 then cell c1 fires and according to fact 2 either E(ct+1) < E
or E(ct+1) = E and (ci)2≤i≤j is a decreasing sequence.
If Xt+1 = Xt +1 then cell c0 fires and according to fact 2 either E(ct+1) < E
or E(ct+1) = E and (ci)0≤i≤j is a decreasing sequence.
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Thus the coupling is well defined. We call T ′ = min{t|Xt = 0}. Either
E(cT ′−1) < E or E(cT ′−1) = E and at time T ′ − 1 a cell of potential ≥ 3 (a
decreasing sequence of size one) fires. Thus T ≤ T ′ and moreover E[T ] ≤ E[T ′].
According to lemma 3, E[T ′] = O(jjN) and thus E[T ] = O(jjN).

Theorem 4. If for all configurations of energy E there exists j ∈ N∗ such
that for all E′ > E the hypothesis H(E′, j) are true then given a configuration
c0 the random variable T = min{t : E(ct) < E} is almost surely finite and
E[T ] = O(jjN2).

Proof. We call t0 = 0 and for i ∈ N∗ if E(cti−1 > E) we define ti as ti =
min{t|E(cti) < E(cti−1)}. We define k ∈ N such that T = tk. According to
lemma 1 for i ≤ k, E[ti−ti−1] = O(jjN). And since the energy of a configuration
is between 0 and 4N : k < 4N and then E[T ] = O(jjN2)

In the next part, we present a method to prove H(E, j) by considering finite
local patterns.

3.2 Enumeration of acceptable coloring.

We consider finite patterns of cells and colorings (i.e. the state of the cells) of
a pattern. We present an algorithm which enumerates all the possible colorings
of a pattern and eliminates colorings which imply a quick energy drop. The
remaining colorings are called acceptable. Finally, we compute the maximum
energy contained by a pattern matching an acceptable coloring.

Definition 8 (Pattern). A pattern P is a subset of {0, . . . , n} × {0, . . . ,m}.
The pattern P centered on cij is the set of cells ∪(k,l)∈P{ci+k,j+l}.

Definition 9 (Interior). The interior of P is the pattern {(i, j) ∈ P|(i±1, j) ∈
P and (i, j ± 1) ∈ P}.

Definition 10 (Coloring). A coloring f of P is a function f : P → Q. We say
that the pattern P centered on cell ci,j matches coloring f if for any (k, l) ∈ P, we
have f(k, l) = ci+k,j+l. We denote by CP the set of all the colorings of pattern P.

Definition 11 (k-acceptable). A coloring f of CP is k-acceptable if there ex-
ists a configuration c such that there is no decreasing sequence of length k in c
and there is a cell ci,j such that the pattern P centered on ci,j matches f .

If a coloring f is not k-acceptable then f is not k′-acceptable for all k′ > k.

Definition 12 (Relative Potential). Consider a pattern P centered on cell cij

which matches a coloring f of CP and (k, l) ∈ P, the relative potential v′kl(f) is
defined as the number of neighboring cells of cell ci+k,j+l which are in the same
state as ci+k,j+l and which are in the pattern P centered on cell cij.

Fact 5. Consider a coloring f of CP , (k, l) ∈ P and a pattern P centered on
cell ci,j matching f . If (k, l) is in the interior of P then v′kl(f) = v(k+i)(l+j),
otherwise v′kl(f) ≤ v(k+i)(l+j).
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A coloring f of CP admitting (i, j) ∈ P such that v′ij(f) ≥ 3 is not 1-
acceptable.

Definition 13. For each pattern P, we define the oriented graph GP = (CP , E).
There is an oriented edge between coloring f1 to coloring f2 if :

– there is (i, j) ∈ P such that f1(i, j) 6= f2(i, j)
– for all k, l 6= (i, j), f1(k, l) = f2(k, l)
– v′i,j(f1) = 2

Fact 6. If there is a path of length i from a coloring f1 to a coloring f2 in GP

and if f2 is not k-acceptable then f1 is not (k + i)-acceptable.

Algorithm 1. Given a set of coloring C0, this algorithm computes a set of col-
oring C1 such that C1 ⊂ C0 and for all coloring f of C0\C1 there exists a path in
GP from f to f ′ such that f ′ ∈ CP\C1 or f ′ is not 1-acceptable:

1 - Compute C′0 = {f ∈ C0|∀(i, j) ∈ P, v′ij(f) ≤ 2}.
2 - Compute the graph G′ = (C′0∪{d}, E) where there is an edge between two

colorings f and f ′ if and only if there is an edge between f and f ′ in GP ; there
is an edge between coloring f and d if there exists a coloring f ′ ∈ CP\C′0 such
that there is an edge between f and f ′ in GP .

3 - Compute C1 = {f ∈ C′0| there is no path between f and d in G′}.

The complexity of this algorithm is O(|C′0|2 + |C0|).

Fact 7. Consider a set of colorings C0 ⊂ CP and k′ such that colorings of CP\C0
are not k′-acceptable. Consider C1 the result of algorithm 1 applied to set C0, then
there exists k such that all colorings of CP\C1 are not k-acceptable. In particular,
this result holds for C0 = CP .

We apply this algorithm to pattern P = {0, . . . , 3}2 in order to prove the main
theorem. All enumerations of cases in the next proofs are made by computer.

Theorem 8. Consider a configuration c. There exists k such that if there exists
(i, j) ∈ T such that

∑
(k,l)∈{0,...,3}2 v(i+k)(j+l) > 18 then there exists a decreasing

sequence of length k in c.

Proof. Consider the pattern P = {0, . . . , 3}2. Applying algorithm 1 to C0 = CP
leads to a set C1 which contains 1092 colorings whereas |C0| = 65536. We now con-
sider the pattern P ′ = ({−1, . . . , 4}2\{(−1,−1), (−1, 4), (4,−1), (4, 4)})2. The
interior of P ′ is P. Applying algorithm 1 to set C′0 = {f ∈ CP′ |f|P ∈ C1} leads to a
set C′1. According to fact 7, there exists k such that all colorings of CP′\C1 are not
k-acceptable. Computing C′1 using C1 is much faster than computing C′1 from CP′ .
For each coloring f of C1, we have maxf ′∈C′1|f ′|P=f (

∑
(i,j)∈P v′ij(f ′)) ≤ 18. Ac-

cording to fact 5, if the pattern P ′ centered on cell (i, j) matches the coloring f ′

of CP′ then
∑

(k,l)∈P v′kl(f
′) =

∑
(k,l)∈P v(i+k)(j+l). Thus if a pattern P centered

on cij is such that
∑

(k,l)∈P v(i+k)(j+l) > 18, then the corresponding coloring is
not k-acceptable. Thus there is a decreasing sequence of length k in c.
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Theorem 9. There exists j such that H(E, j) is true for every E > 18dm
4 ed

n
4 e.

Proof. Consider a configuration c and the pattern P = {0, . . . , 3}2. There ex-
ists j such that if cij is such that

∑
(k,l)∈P v(i+k)(j+l) > 18 then there exists

a decreasing sequence of length j in c. Suppose that there is no cell cij such
that

∑
(k,l)∈P v(i+k)(j+l) > 18. If n = 0 mod 4 and m = 0 mod 4 then E(c) =∑

(i,j)∈T vij =
∑

0≤i<n/4,0≤j<m/4(
∑

(k,l)∈P(v4i+k,4j+l)) ≤ 18nm
16 . If n 6= 0 mod 4

and m = 0 mod 4 then E(c) ≤
∑

0≤i≤n/4,0≤j<m/4(
∑

(k,l)∈P(v4i+k,4j+l)) ≤
18dn

4 e
m
4 . In the two other cases we also have E(c) ≤ dm

4 ed
n
4 e. This imply that

H(E, j) is true for E > 18dm
4 ed

n
4 e.

Applying this result to theorem 4 proves the main theorem.

References
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