
Asynchronous Behavior of
Double-quiescent Elementary Cellular Automata

Nazim Fatès, Damien Regnault, Nicolas Schabanel, and Éric Thierry1
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Abstract. In this paper we propose a probabilistic analysis of the re-
laxation time of elementary finite cellular automata (i.e., {0, 1} states,
radius 1 and unidimensional) for which both states are quiescent (i.e.,
(0, 0, 0) 7→ 0 and (1, 1, 1) 7→ 1), under α-asynchronous dynamics (i.e.,
each cell is updated at each time step independently with probabil-
ity 0 < α 6 1). This work generalizes previous work in [1], in the sense
that we study here a continuous range of asynchronism that goes from
full asynchronism to full synchronism. We characterize formally the sensi-
tivity to asynchronism of the relaxation times for 52 of the 64 considered
automata. Our work relies on the design of probabilistic tools that enable
to predict the global behaviour by counting local configuration patterns.
These tools may be of independent interest since they provide a con-
venient framework to deal exhaustively with the tedious case analysis
inherent to this kind of study. The remaining 12 automata (only 5 after
symmetries) appear to exhibit interesting complex phenomena (such as
polynomial/exponential/infinite phase transitions).

1 Introduction

The aim of this article is to analyze the asynchronous behavior of unbounded
finite cellular automata. Cellular automata are widely used to model systems
involving a huge number of interacting elements such as agents in economy,
particles in physics, proteins in biology, distributed systems, etc. In most of
these applications, in particular in many real system models, agents are not
synchronous. Depending on the transition rules, the behaviour of the system may
vary widely when asynchronism increases in the dynamics. More generally one
can ask how much does asynchronous in real system perturbs computation. In
spite of this lack of synchronism, real living systems are very resilient over time.
One might then expect the cellular automata used to model these systems to be
robust to asynchronism and to other kind of failure as well (such as misreading
the states of the neighbors). It turns out that the resilience to asynchronism
widely varies from one automata to another (e.g., [2,3]). Only few theoretical
studies exist on the influence of asynchronism. Most of them usually focus on
one specific cellular automata (e.g., [4,5,6]) and do not address the problem
globally. Recently, Gács shows in [7] that it is undecidable to determining if in



a given automota, the sequences of changes of states followed by a given cell
is independent of the history of the updates. Related work on the existence of
stationary distribution on infinite configurations for probabilistic automata can
be found in [8].

One can see cellular automata as physical systems where cell states change
according to local constraints (the transition rules). One typical example consists
of a network where each cell have two states, e.g., “I have a token” and “I don’t
have a token”, and where transitions from one state to the other depends on the
states of the neighbours, e.g., “I get a token if both of my neighbors have one” or
“I have a token if and only if my right neighbor has one”, etc. One natural ques-
tion for such systems, ask for the relaxation time, i.e. the time needed to reach a
stable configuration (e.g., “everyone has a token” or “no one has a token”). As
opposed to classic work in asynchronous distributed computing, where one tries
to design efficient transitions rules that guarantees fast convergence to a stable
configuration (e.g., [9]), we study here how asynchrony affects the global evolu-
tion of the system given an arbitrary set of local constraints, and in particular
how does asynchronicity affects its relaxation time. In [1], the authors carried
out a complete analysis of the class of one-dimensional double quiescent elemen-
tary cellular automata (DQECA), where each cell has two states 0 and 1 which
are quiescent (i.e., where each cell for which every cell in its neighbourhood are
in the same state, remains in the same state) and where each cell updates ac-
cording to its state and the states of its two immediate neighbours. They study
the behaviour of these automata under fully asynchronous dynamics, where only
one random cell is updated at each time step. They show that one can classify
the 64 DQECAs in six categories according to their relaxation times under full
asynchronism (either constant, logarithmic, linear, quadratic, exponential or in-
finite) and furthermore that the relaxation time characterizes their behaviour,
i.e., that all automata with equivalent relaxation times present the same kind of
space-time diagrams.

The present paper extends this study to a continuous range of asynchy-
ronism from fully asynchronous dynamics to fully synchronous dynamics: the
α-asynchronous dynamics, with 0 < α 6 1. In this setting, each cell is updated
independently with probability α at each time step. When α varies from 1 down
to 0, the α-asynchronous dynamics evolves from the fully synchronous regime to
a more and more asynchronous regime. As α approaches 0, the probability that
the updates involve at most one cell tends to 1, and the dynamics gets closer and
closer to a kind of fully asynchronous dynamics up to a time rescaling by a factor
1/α. Abusing of the notation, we thus refer the fully asynchronous dynamics as
the 0-asynchronous regime.

Figure 1 page 3 presents the space-time diagrams of the 24 representatives
of the DQECAs as α increases (by steps of 0.25) starting from the same random
configuration of length n = 100. The last column plots the density of black cells
at time step t = 1000/α on one single random configuration. This class exhibits
a rich variety of behaviours. Thirteen representatives of the DQECAs (ECAs 204
to 128, 198, and 142 on Fig. 1) appear to be marginally sensitive to asynchronism.
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Fig. 1. Behaviour of DQECAs as a function of the synchronicity rate α.

Six of them (ECAs 242 to 170, 194, and 138 on Fig. 1) present a brutal transition
from the synchronous to asynchronous dynamics: they converge in polynomial
time to an all-zero or all-one configuration as soon as (even a small amount of)
asynchronism is introduced, while diverge under synchronous dynamics. One can
observed that their space-time diagrams exhibit random walks like behaviour.
The most interesting behaviour are observed on the remaining five representa-
tives. The relaxation time of ECAs 210 and 214 are respectively exponential and
infinite under fully asynchronous dynamics, and both infinite under synchronous
dynamics, but appears to be polynomial under α-asynchronous dynamics. The



relaxation time as well as the time-space diagrams of ECAs 178 and 146 evolve
continuously as α increases, but seem to present an interesting phase transition
at some αc and α′c, respectively, such that the relaxation time appears to be
polynomial for α < α′c, and exponential for α > α′c. Finally, the relaxation time
of ECA 150 appears to be exponential when 0 < α < 1, and is infinite otherwise.

Section 2 introduces the main definitions and presents our main result. Sec-
tion 3 presents the key phenomena that differentiate the different dynamics: fully
synchronous, α-asynchronous (studied here), and fully asynchronous (studied in
[1]). These observations will guide the design of probabilistic tools that are pre-
sented in Section 4 and used in Section 5 to bound the relaxation times. Finally,
Section 6 sums up the intuitions, hints and conjectures on the behaviours of the
remaining automata that could not be treated theoretically here, leaving the
determination of their relaxation times open.

2 Definitions, Notations and Main Results

In this paper, we consider the class of the two-state cellular automata on finite
size configurations with periodic boundary conditions.

Definition 1. An Elementary Cellular Automata (ECA) is given by its transi-
tion function {δ : {0, 1}3 → {0, 1}}. We denote by Q = {0, 1} the set of states.
A state q is quiescent if δ(q, q, q) = q. An ECA is double-quiescent (DQECA)
if both states 0 and 1 are quiescent.

We denote by U = Z/nZ the set of cells. A finite configuration with periodic
boundary conditions x ∈ QU is a word indexed by U with letters in Q.

Definition 2. For a given pattern w ∈ Q∗, we denote by |x|w = #{i ∈ U :
xi+1 . . . xi+|w| = w} the number of occurrences of w in configuration x.

We will use the following labels introduced in [1] which will simplify the
analysis of the probabilistic evolution of the ECAs.

Notation 1 We say that a transition is active if it changes the state of the cell
where it is applied. Each ECA is fully determined by its active transitions. We
label each active transition by a letter as follow:

label A B C D E F G H

x y z 000 001 100 101 010 011 110 111
δ(x, y, z) 1 1 1 1 0 0 0 0

We label each ECA by the set of its active transitions. Note that with these
notations, the DQECAs are exactly the ECAs having a label containing neither
A nor H.

We consider three kinds of dynamics for ECAs: the synchronous dynamics, the α-
asynchronous dynamics and the fully asynchronous dynamics. The synchronous
dynamics is the classic dynamics of cellular automata, where the transition func-
tion is applied at each (discrete) time step on each cell simultaneously.



Definition 3 (Synchronous Dynamics). The synchronous dynamics
Sδ : QU → QU of an ECA δ, associates deterministically to each configuration
x the configuration y, such that for all i ∈ U , yi = δ(xi−1, xi, xi+1).

Definition 4 (Asynchronous Dynamics). An asynchronous dynamics ASδ

of an ECA δ associates to each configuration x a random configuration y, such
that yi = xi for i 6∈ S, and yi = δ(xi−1, xi, xi+1) for i ∈ S, where S is a
random subset of U chosen by a daemon. We consider two types of asynchronous
dynamics:

– in the α-asynchronous dynamics, the daemon selects at each time step each
cell i in S independently with probability α where 0 < α 6 1. The random
function which associates the random configuration y to x according to this
dynamics is denoted ASα

δ .
– in the fully asynchronous dynamics, the daemon chooses a cell i uniformly at

random and sets S = {i}. The random function which associates the random
configuration y to x according to this dynamics is denoted ASF

δ .

For a given ECA δ, we denote by xt the random variable for the configuration
obtained after t applications of the asynchronous dynamics function ASδ on con-
figuration x, i.e., xt = (ASδ)t(x). Note that (xt)t∈N is an homogeneous Markov
chain on Qn. Remark that ASδ could equivalently be seen as a function with two
arguments, the configuration x and the random subset S ⊆ U chosen according
to the processes listed above.

Definition 5 (Fixed point). We say that a configuration x is a fixed point
for δ under asynchronous dynamics if ASδ(x) = x whatever the choice of S is
(the cells to be updated). Fδ denotes the set of fixed points for δ.

The set of fixed points for the considered asynchronous dynamics is clearly
identical to {x : Sδ(x) = x} the set of fixed points of the synchronous dynamics.
The set of fixed points of an automaton can be easily deduce from its labeling
as shown in [1]. Every DQECA admits two trivial fixed points, 0n and 1n.

Definition 6 (Relaxation Time). Given an ECA δ and a configuration x,
we denote by Tδ(x) the random variable for the time elapsed until a fixed point
is reached from configuration x under an asynchronous dynamics, i.e., Tδ(x) =
min{t : xt ∈ Fδ}. The relaxation time of ECA δ is maxx∈QU E[Tδ(x)].

If α < 1 the process (xt)t∈N converges to a stationary distribution, but we
will abusively say that an ECA diverges from an initial configuration x if the
probability to reach a fixed point from x is 0. We can now state our main theorem.

Theorem 1 (Main result). Under α-asynchronous dynamics, among the
sixty-four DQECAs, we can determine the behaviour of 52 of them:

– forty-eight converge almost surely to a random fixed point from any ini-
tial configuration, and the relaxation times of these forty-eight convergent
DQECAs are 0, Θ( ln n

ln(1−α) ), Θ(n
α ), Θ(n

α + 1
α(1−α) ), O( n

α(1−α) ), O( n
α2(1−α) ),

Θ( n2

α(1−α) ).



Table 1. DQECAs under asynchronous and synchronous dynamics (see Section 2).
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– two diverge from any initial configuration that is neither 0n, nor 1n, nor
(01)n/2 when n is even.

– two converge with a small probability from few initial configurations when n
is even and diverge otherwise.

The twelves others (5 after symetries) have different behaviours that we can-
not prove presently. Some seem to exhibit a phase transition but their mathemat-
ical analysis remains a challenging problem. All the results and the conjectures
(with question marks) are summed up in table 1.



3 Key Observations

Due to 0/1 and reversal symmetries of configurations, we shall w.l.o.g. only
consider the 24 DQECAs listed in Tab. 1 among the 64 DQECAs. For each of
these 24 DQECAs, the number of the equivalent automata under symmetries is
written within parentheses after their classic ECA code in the table.

From now on, we only consider the α-asynchronous dynamics; this will be
implicit in all the following propositions. Our results rely on the study of the
evolution of the 0-regions and 1-regions in the space-time diagram (i.e., of the
intervals of consecutive 0s or consecutive 1s in configuration xt). We will now
enumerate the different ways the regions can be affected.

First we consider the cases where a cell updates and none of its two neigh-
bours update:

– Transitions D and E are thus responsible for decreasing the number of regions
in the space-time diagram: D “erases” the isolated 1s and E the isolated 0s.

– Transitions B and F act on patterns 01. Intuitively, transition B moves a
pattern 01 to the left, and transition F moves it to the right. In particular,
patterns 01 perform a kind of random walk for DQECA with both transitions
B and F if no others phenomena occurs. The arrows in Tab. 1 represent the
different behavior of the patterns: ← or →, for left or right moves of the
patterns 01 or 10; !, for random walks of these patterns.

– Similarly, transitions C and G act on patterns 10. Transition C moves a
pattern 10 to the right, and transition G moves it to the left.

One important observation made during the study of the fully asynchronous
dynamics in [1] is that the number of regions can only decrease and each activa-
tion of D or E makes the number of regions decrease by one. This statement is
not true anymore under the α-asynchronous dynamics, as we will see now. Here
are the new phenomena when two or three neighboring cells update at the same
time:

B F B E C F GB E

time t+1

time t

Shift Spawn Fork Annihilation

– Shift phenomenon occurs with the activation of rules B and E, or C and E,
or F and D, or G and D together: in this case an isolated 0 or an isolated 1
is shifted. Here even if a transition D or E is activated, no regions is erased.

– Spawn phenomenon occurs with the activation of rules B and F, or C and
G together: a pattern 0011 can create a new region. This is an important
phenomenon because it increases the number of regions by one each time it
occurs.

– Fork phenomenon occurs with the activation of rules B, C and E or F, G
and D together: here three neighboring cellules update at the same time and
an isolated point is duplicated. This phenomenon increases the number of
regions by one each time it occurs.



– Annihilation phenomenon occurs with the activation of rules B and C or
F and G together: the activation of these two rules erases a region of length
2. This is a very important new phenomenon because it is another way to
decrease the number of region. In particular, it is the only way to decrease the
number of regions in automaton where neither D nor neither E is activated.

The next section is devoted to the tools which will be used to prove our main
theorem.

4 Lyapunov functions based on local neighbourhoods

Definition 7 (Mask). A mask ṁ is a word on {0, 1, 0̇, 1̇} containing exactly
one dotted letter in {0̇, 1̇}. We say that the cell i in configuration x matches the
mask ṁ = m−k . . .m−1ṁ0m1 . . .ml if xi−k . . . xi . . . xi+l = m−k . . .m0 . . .ml.
We denote by m the undotted word m−k . . .m0 . . .ml.

Fact 2 The number of cells matching a given mask ṁ in a configuration x is
exactly |x|m, the number of occurrences of the undotted word m.

Definition 8 (Masks basis). A masks basis B is a finite set of masks such
that for any configuration x and any cell i, there exists an unique ṁ ∈ B that
matches cell i.

A masks basis B can be represented by a binary tree where the children
of a node are labelled by adding 0 and 1 to the node label, on the right
or the left (the children of the root receive 0̇ and 1̇), and where the masks
of B are the labels of the leaves. Reciprocally, any binary tree observing these
properties defines a unique masks basis by taking the labels of its leaves.
Figure 2b page 10 illustrates the construction of the tree for the masks ba-
sis B = {11̇, 001̇0, 001̇1, 0101̇, 1101̇, 0̇0, 00̇10, 00̇11, 010̇1, 110̇1}.

Masks bases will be used to define Lyapunov weight functions from local
patterns. It provides an efficient tool to validate exhaustive case analysis.

Definition 9 (Local weight function). A local weight function f is a func-
tion from a masks basis B to Z. The local weight of the cell i in configuration x
given by f is F (x, i) = f(ṁ) where ṁ is the unique mask in B matching cell i.
The weight of a configuration x given by f is defined as F (x) =

∑
i F (x, i).

Fact 3 Given a local weight function f : B → Z, the weight of configuration x
is equivalently defined as: F (x) =

∑
ṁ∈B f(ṁ) · |x|m.

Notation 2 For a given random sequence of configurations (xt)t∈N and a weight
function F on the configurations, we denote by (∆F (xt))t∈N the random sequence
∆F (xt) = F (xt+1)− F (xt).

The next lemma provides upper bounds on stopping times for the markovian
sequence of configurations (xt)t∈N subject to a weight function F decreasing or
remaining constant on average (a Lyapunov function). Its proof can be found
in [1].



Lemma 1. Let m ∈ Z+ and ε > 0. Consider (xt) a random sequence of con-
figurations, and F a weight function such that (∀x) F (x) ∈ {0, . . . ,m}. Assume
that if F (xt) > 0, then E[∆F (xt)|xt] 6 −ε. Let T = min{t : F (xt) = 0} denote
the random variable for the first time t where F (xt) = 0. Then, E[T ] 6 m+F (x0)

ε .

5 Relaxation Times

Due to space constraints, we only present the theorem for the relaxation time of
the DQECA BEF. The results for Identity, E, EF, EFG, DE, B, BC, BDE,
BE, BCDE, BCE, BCDEF, BEFG, BDEG, BEG, BDEF, BF, BG are
given in Tab. 1 (check our websites for the full version of the paper).

5.1 Automaton BEF(194)

The fixed points of this automaton are 0n and 1n. Fixed point 1n cannot be
reached from any other configuration. Under fully asynchronous dynamics, the
length of any 1-region follows a random walk, and thus converges in O(n3) in
expectation. Here, the Spawn phenomenon (rule B and F applied together to
cells i − 1 and i) can transform the pattern 0001̇11 into the pattern 001011
with probability α2. Even if the number of 0s and 1s are the same in these
two patterns, in the pattern 001011 two 1s can become 0s at the next step
(by applying rules E and F), while only one 0 can become a 1 at the next
step (by applying rule B). So the creation of isolated 0s tends to decrease the
number of 1s at the next step, leading to a speed up from a cubic relaxation time
under fully asynchronous dynamics to a linear relaxation time in α-asynchronous
dynamics with the respect of the size of the configuration. We consider the
following variant. Let a = −2c + 2, b = −1, c = −

⌊
3
α

⌋
− 1. We use the masks

basis and local weight function f given on page 10. We have: F (x) = a|xt|1 +
b|xt|011 + c|xt|101. For all configuration x, F (x) ∈ {0, . . . , 2n(

⌊
3
α

⌋
+ 4)} and

F (x) = 0 if and only if x = 0n.

Lemma 2. For all non-fixed point configuration xt,
E[∆F (xt)] 6 −α(1− α)|xt|01.

Proof. By linearity of expectation: E[∆F (x)] =
∑n−1

i=0 E[∆F (x, i)]. We evaluate
the variation of F (x, i) using the masks basis of Figure 2b.

Consider that at step t, cell i matches:

– mask 11̇: F (xt, i) = a. With probability 1 at the step t + 1, cell i matches
mask 1̇. So F (xt+1, i) ∈ {a, a + b}. Since b < 0, F (xt+1, i) 6 F (xt, i).
Thus, E[(∆F (xt, i)] 6 0.

– mask 0̇0: F (xt, i) = 0. With probability 1 at the step t + 1, cell i
matches mask 0̇. So F (xt+1, i) ∈ {0, c}. Since c < 0, F (xt+1, i) 6 F (xt, i).
Thus, E[(∆F (xt, i)] 6 0.

– mask 001̇0 (and 00̇10 together):
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Fig. 2. Mask basis for BEF.

With probability α(1− α) α(1− α) (1− α)2 α2

At the step t + 1, cell i matches mask 00̇ 11̇ 01̇ 10̇

and ∆F (xt, i− 1) = 0 = a + b = 0 = a

and ∆F (xt, i) = −a = 0 = 0 = −a

Thus, E[∆F (xt, i)+∆F (xt, i−1)] = −aα(1−α)+(a+b)α(1−α) = bα(1−α) =
−α(1− α).

– mask 001̇1 (and 00̇11 together):

With probability α(1− α) α(1− α) (1− α)2 α2

at the step t + 1, cell i matches mask 00̇ 11̇ 01̇ 10̇

and ∆F (xt, i− 1) = 0 = a + b = 0 = c− a− b

and ∆F (xt, i) = −a− b = −b = 0 = a

Thus, E[∆F (xt, i)+∆F (xt, i−1)] = (−a−b)α(1−α)+aα(1−α)+(c−b)α2 6
α(1− α)− 2α 6 −α(1− α).

– mask 1101̇ (and 110̇1 together):

With probability α (1− α)

at the step t + 1, the cell i matches mask 00̇ 01̇

and ∆F (x, i− 1) = −c = 0
and ∆F (x, i) = −a− b = 0

Thus, E[∆F (xt, i) + ∆F (xt, i− 1)] = (−a− b− c)α(1− α) 6 −α(1− α).
– mask 0101̇ (and 010̇1 together):

With probability α (1− α)2 α(1− α)

at the step t + 1, the cell i matches mask 00̇ 101̇ 001̇

and ∆F (xt, i− 1) = −c = 0 = −c

and ∆F (xt, i) = −a− b = 0 = 0

Thus, E[∆F (xt, i) + ∆F (xt, i − 1)] = (−a − b − c)α(1 − α) − cα(1 − α) 6
−α(1− α).

Finally
∑n−1

i=0 E[∆F (xt, i)] 6 −α(1−α)(|xt|0010+|xt|0011+|xt|1011+|xt|0101) 6
−α(1 − α)|xt|01. So, as long as xt is not a fixed point, we have E[∆F (xt)] 6
−α(1− α)|xt|01 6 −α(1− α).



Theorem 4. Under α-asynchronous dynamics, DQECA BEF converges a.s. to
a fixed point from any initial configuration. The relaxation time is O

(
n

α2(1−α)

)
.

Proof. Using Lemma 1 and Lemma 2, automaton BEF converges a.s. from any
intial configuration (except 1n) to 0n. The relaxation time is O

(
n
α ×

1
α(1−α)

)
=

O
(

n
α2(1−α)

)
.

6 Conjectures

This section presents the remaining twelve DQECAs for which the mathematical
analysis is not achieved yet. However by means of simulation and by the study of
special patterns, we can give some insights of the phenomena which guide their
dynamics and differentiate them from the other DQECAs.

Automaton BCDEFG(178). The fixed points of this automaton are exactly 0n

and 1n. Simulations show a phase transition concerning the relaxation time,
which can be also clearly observed on time-space diagrams and seems to occur
at α = αc ≈ 0, 5. If α < αc, the overall behaviour of the automaton does not
drastically change when α varies: 0- and 1-regions merge into larger regions
reducing their number, and it seems to converge to 0n or 1n with an O(n2/α)
expected time. While if α > αc, large 0- and 1-regions crumble quickly at their
frontiers and patterns of 0101 · · · 01 fill the space between the regions. The closer
α is to 1, the smaller is the probability of formation of large regions. In that case,
we conjecture that the relaxation time is exponential in n.

Automaton BCEFG(146). The fixed points of this automaton are exactly 0n

and 1n. This automaton shows a phase transition which seems to appear when
α = α′c ≈ 0, 67. When α < α′c, 1-regions quickly disappear and the expected
convergence time is conjectured to be polynomial in n. When α is close to 1,
like the automaton BCDEFG, large 1-regions do not survive because they tend
to crumble very quickly. On the other hand, isolated 1s are easily deleted and
seem to multiply faster than they disappear. In that case, we conjecture that
the relaxation time is exponential in n.

Automaton BCF(214). The fixed points of this automaton are 0n, 1n

and (01)n/2 (if n is even). When starting from another configuration, it is impos-
sible to reach one of these fixed points in the fully asynchronous dynamics, since
the number of regions remains constant. With the α-asynchronous dynamics,
due to the Annihilation phenomenon, any configuration converges a.s. to a fixed
point within a finite time. The sizes of large 0-regions decrease quickly. Only re-
gions with two 0s may disappear, but 10011 patterns may evolve into 11111 or
10101 with the same probability. This could lead to an increase of small regions,
tending to slow down the convergence. However a sequence of consecutive small
0-regions slows down the spawning phenomenon: in a 1001001 pattern, the first
00 region can not split. Thus the number of regions tends to decrease. We con-
jecture that the relaxation time is polynomial in n and contains an O( 1

α2(1−α) )
term corresponding to the deletion of 00 regions.



Automaton BCFG(150). The fixed points of this automaton are 0n, 1n

and (01)n/2 (if n is even). In the fully asynchronous dynamics, this automa-
ton does not converge to a fixed point since it is impossible to suppress a region.
However in the α-asynchronous dynamics, due to the Annihilation phenomenon,
this automaton converges a.s. to a fixed point within a finite time. Simulations
suggest that the relaxation time is exponential in n.

Automaton BCEF(210). The fixed points of this automaton are exactly 0n

and 1n. In the fully asynchrnous dynamics, this automaton converges to 0n with
a exponential expected time. In both fully asynchrounous and α-asynchronous,
dynamics, the sizes of regions of 0 tend to decrease quickly. However in the
fully asynchronous dynamics, they may only disappear by merging, and the
size of the last 0-region will converge to 0 in exponential expected time. The
α-asynchronous dynamics introduces the Annihilation phenomenon. On simula-
tions, the convergence to fixed points seems to be polynomial. This case seems
similar to the BCF automaton, but the analysis is a bit more complicated since
0-regions may merge, and this must be taken into account in the proof of bounds
for the relaxation time.
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